--- License: apache-2.0 Language: - En Pipeline_tag: text-generation Base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml tags: - Chat --- ## This repo contains EXL2 quants of the model. If you need the original weights, please find them [here](https://huggingface.co/anthracite-org/magnum-v2-4b). ## Base repo only contains the measurement file, see revisions for your quant of choice. - [measurement.json](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/main) - [2.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/2.0bpw) - [3.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/3.0bpw) - [4.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/4.0bpw) - [5.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/5.0bpw) - [6.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/6.0bpw) - [8.0bpw](https://huggingface.co/anthracite-org/magnum-v2-4b-exl2/tree/8.0bpw) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/658a46cbfb9c2bdfae75b3a6/9JwXZze4tHRGpc_RzE2AU.png) This is the eighth in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml](https://huggingface.co/IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml). ## Prompting Model has been Instruct tuned with the ChatML formatting. A typical input would look like this: ```py """<|im_start|>system system prompt<|im_end|> <|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant """ ``` ## Support In order to inference this model you will have to use Aphrodite or vLLM as llama.cpp has not yet merged the required pull request to fix llama3.1 rope_freqs not respecting custom head_dim - You can however get around this by quanting the model yourself with the following fixes for a working GGUF. However, it will be stuck at 8k context until [this PR](https://github.com/ggerganov/llama.cpp/pull/9141) is merged. 1. Remove `"rope_scaling": {}` from `config.json` 2. Change `"max_position_embeddings"` to `8192` in `config.json` 3. Add `"add_bos_token": false` to `tokenizer_config.json` ## Credits - [anthracite-org/Stheno-Data-Filtered](https://huggingface.co/datasets/anthracite-org/Stheno-Data-Filtered) - [anthracite-org/kalo-opus-instruct-22k-no-refusal](https://huggingface.co/datasets/anthracite-org/kalo-opus-instruct-22k-no-refusal) - [lodrick-the-lafted/NopmWritingStruct](https://huggingface.co/datasets/lodrick-the-lafted/NopmWritingStruct) - [NewEden/Gryphe-3.5-16k-Subset](NewEden/Gryphe-3.5-16k-Subset) - [Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned) - [Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned](https://huggingface.co/datasets/Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned) This model has been a team effort, and the credits goes to all members of Anthracite. ## Training The training was done for 2 epochs. We used 2 x [RTX 6000s](https://store.nvidia.com/en-us/nvidia-rtx/products/nvidia-rtx-6000-ada-generation/) GPUs graciously provided by [Kubernetes_Bad](https://huggingface.co/kubernetes-bad) for the full-parameter fine-tuning of the model. [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) ## Safety ...