{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe25b58c240>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679780166838947648, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAALKJHb+p544/YDMBPxrFqr7zN9O8zv73PTXzgT9N3tw+uDyzPOvAMbwK4Ym9RzquvegEhz5WaMW9NTHZvlkigD0UBwK/8p83vSySbj8LxCQ8uot+P6nglzsAzpG/n5Ykvde3lT411G8+PaW1PrgjDj9oUIm/hFuSvkdAuT4EN6O+z7LyPZB2/T2HmjA/Lme/PgBW1zzLtma8LKkRv5oaHb0kdBw/lpXuvNLuP72m/TQ9Jn5Uv+jqMrxyfXQ/MWxwPbInjz9KhUy8HISSv+bWR73Xt5U+NdRvPj2ltT64Iw4/QAXEvs1bub/Z7Ta/aZhOvm8qnT1FM909YEpDP3O8rT/SlCA/fAQDvGP9Eb9aqKS8U/GaP1w2jb1esoS/1mStPQmECD9RB4O9cLoiPi/pmD3mZp2/87OKvZDkkr+OECO917eVPjXUbz49pbU+uCMOP/Af3L5qTdq/9eeqvxBaor7WMuA9H6byPVKQJj/Vd5c/tSRlP/g3LzpGpRC/pTxPvai3lT+Zb2G81S1av5fAMj0bzKo+FPoZO22pCj4iLUE9KpepvwsbmjqkQoC/OJw1vde3lT411G8+PaW1PrgjDj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAoTqC1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbjfLPQAAAAA4Dfm/AAAAAJ4t6j0AAAAAZRriPwAAAABy+pU8AAAAAEE55j8AAAAAXHm+PQAAAADpXeu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACceMtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDtgkD0AAAAAih8AwAAAAACNUSS9AAAAAFT35z8AAAAAwKQFPgAAAABn8eo/AAAAANUUgD0AAAAAOQ7dvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIpEnTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvOT49AAAAAPqk/L8AAAAActbfPQAAAAB7C/o/AAAAABHPpzsAAAAAK5buPwAAAABmyqI8AAAAACEx2r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2zlC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACABzAVPQAAAAC5gwDAAAAAAIO7B74AAAAATgHpPwAAAABJ5Po9AAAAAIcK3D8AAAAAeHy8PQAAAAChRPe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIvJTV2A5JeMAWyUTegDjAF0lEdArYYbd+G47XV9lChoBkdAjtxjyWiUPmgHTegDaAhHQK2HNWV/tpp1fZQoaAZHQI4noxL0z0poB03oA2gIR0Cth3MHryDqdX2UKGgGR0COl2pVCHARaAdN6ANoCEdArYfl8qnWKHV9lChoBkdAj8igXuVopWgHTegDaAhHQK2XDTEzfrN1fZQoaAZHQI05zRBu4w1oB03oA2gIR0CtmAbdadMCdX2UKGgGR0COxmwMYuTSaAdN6ANoCEdArZgsSZjQRnV9lChoBkdAiaCt+so2GmgHTegDaAhHQK2YeDJ2dNF1fZQoaAZHQI3ra4H5aeRoB03oA2gIR0CtpBix/ustdX2UKGgGR0CLc0PvrnklaAdN6ANoCEdAraUQRbr1NHV9lChoBkdAjwZllK9PDmgHTegDaAhHQK2lN4k/r0J1fZQoaAZHQI+dE6xPfsNoB03oA2gIR0CtpYUaQ3gldX2UKGgGR0CKoF6Q/5ckaAdN6ANoCEdArbUsm2LHdXV9lChoBkdAjoVYf4h2XGgHTegDaAhHQK22IsLfDUF1fZQoaAZHQIsSYe7tiQVoB03oA2gIR0Cttkdi2DxtdX2UKGgGR0COKNdSEUTMaAdN6ANoCEdArbaRBAv+O3V9lChoBkdAkCXiTEBKc2gHTegDaAhHQK3BwLBKtgd1fZQoaAZHQI5dZ1HOKO1oB03oA2gIR0Ctwrmbb1yvdX2UKGgGR0CMjCdGy5ZsaAdN6ANoCEdArcLe0gKWs3V9lChoBkdAjpMWxyGSIWgHTegDaAhHQK3DLbVz6rN1fZQoaAZHQI5G0wlByCFoB03oA2gIR0Ct0qNwJgLJdX2UKGgGR0COZDuVHFxXaAdN6ANoCEdArdOZlMAWBXV9lChoBkdAj3bqB/Zuh2gHTegDaAhHQK3TwU5dWyV1fZQoaAZHQI/W0b5uZThoB03oA2gIR0Ct1Az7l7tzdX2UKGgGR0CPhwVv/BFeaAdN6ANoCEdArd9bamGdqnV9lChoBkdAkDSetSydF2gHTegDaAhHQK3gX4Hooux1fZQoaAZHQI6sjSNOuaFoB03oA2gIR0Ct4IWphnandX2UKGgGR0CLqcB3iaRZaAdN6ANoCEdAreDUm8dxQ3V9lChoBkdAjZMFSS/0umgHTegDaAhHQK3wtDu0CzV1fZQoaAZHQIoUVqYZ2p1oB03oA2gIR0Ct8aj0cwQEdX2UKGgGR0COZg9W6shgaAdN6ANoCEdArfHQNEw353V9lChoBkdAjWxBaC+UQmgHTegDaAhHQK3yHFUADJV1fZQoaAZHQI6K6sKb8WNoB03oA2gIR0Ct/V/yGzrvdX2UKGgGR0CPoHiExqO+aAdN6ANoCEdArf5W0svqT3V9lChoBkdAjlLe4Cp3o2gHTegDaAhHQK3+gViWmgt1fZQoaAZHQI5Om/+KjztoB03oA2gIR0Ct/s0lRgqmdX2UKGgGR0CO9vDKoybhaAdN6ANoCEdArg21bLU1AXV9lChoBkdAjpYa0x/NJWgHTegDaAhHQK4PQ+HrQgN1fZQoaAZHQJDCR1zQu29oB03oA2gIR0CuD2nzH0btdX2UKGgGR0CLqO6q814xaAdN6ANoCEdArg+2vwEyL3V9lChoBkdAjnVKOtGNJmgHTegDaAhHQK4bPbmEGqx1fZQoaAZHQIkFTyrgflpoB03oA2gIR0CuHDoUi6g/dX2UKGgGR0CPlBwYtQKsaAdN6ANoCEdArhxfDgqEvnV9lChoBkdAjIKkZaV2R2gHTegDaAhHQK4crQ66reZ1fZQoaAZHQI78qu2Zy+9oB03oA2gIR0CuKrUkGA09dX2UKGgGR0COx5RekYXPaAdN6ANoCEdArixNnEl3QnV9lChoBkdAjq/34bjtHGgHTegDaAhHQK4sjMHryDt1fZQoaAZHQI6+kcS5AhVoB03oA2gIR0CuLRXwkPc0dX2UKGgGR0CO094bCJoCaAdN6ANoCEdArjjNkOI683V9lChoBkdAjt7jsdDIBGgHTegDaAhHQK45wDvmYBx1fZQoaAZHQI55Q1aW5YpoB03oA2gIR0CuOeZqubI+dX2UKGgGR0CPIkBiCrcTaAdN6ANoCEdArjo4UzsQd3V9lChoBkdAkBIDK9wm3WgHTegDaAhHQK5HcWoFV1h1fZQoaAZHQI5NWzF+/g1oB03oA2gIR0CuSQovrWy1dX2UKGgGR0COfO+fRNRFaAdN6ANoCEdArklJ/d69kHV9lChoBkdAkDoZ8Sf16GgHTegDaAhHQK5Jxu63AmB1fZQoaAZHQIxaU7dSEUVoB03oA2gIR0CuVsEJSiuddX2UKGgGR0CQGXLnLaEjaAdN6ANoCEdArle08aGYbHV9lChoBkdAj3eSf+S8rmgHTegDaAhHQK5X20UoKD11fZQoaAZHQJAfGPsAvL5oB03oA2gIR0CuWCf1YhdMdX2UKGgGR0CPj7FR51NhaAdN6ANoCEdArmSRdfLLZHV9lChoBkdAkB8+P3i71GgHTegDaAhHQK5mBQk5ZKZ1fZQoaAZHQIu1wsRQJoloB03oA2gIR0CuZkdZRsMzdX2UKGgGR0CQccHbh3qzaAdN6ANoCEdArmbDFwT/Q3V9lChoBkdAjCNTqB3A22gHTegDaAhHQK50gE6kqMF1fZQoaAZHQIvjHYODrZ9oB03oA2gIR0CudXdWyTpxdX2UKGgGR0CPNOdU83dcaAdN6ANoCEdArnWd58jRlnV9lChoBkdAj2jUzsQd0mgHTegDaAhHQK519lJ6IFh1fZQoaAZHQI9V3VEuxr1oB03oA2gIR0CugXCZF5OadX2UKGgGR0CNgs619fCzaAdN6ANoCEdAroLrDl5nlHV9lChoBkdAkIHcnNPgvWgHTegDaAhHQK6DJA1Nxlx1fZQoaAZHQIufgyqMm4RoB03oA2gIR0Cug5G6f8MvdX2UKGgGR0CPofKODJ2daAdN6ANoCEdArpI+iJwbVHV9lChoBkdAjfs32VVxTGgHTegDaAhHQK6TNnZCfHx1fZQoaAZHQI4E6fthNM5oB03oA2gIR0Cuk1vHLidbdX2UKGgGR0CODOaz/p+uaAdN6ANoCEdArpOmys0YTHV9lChoBkdAj8wRsVLzw2gHTegDaAhHQK6e8A5Jbt91fZQoaAZHQI9e6yB06o5oB03oA2gIR0Cun/iWVu76dX2UKGgGR0CN8lXAdn01aAdN6ANoCEdArqA0i8nNPnV9lChoBkdAjyZTM7lq8GgHTegDaAhHQK6grbs4T9N1fZQoaAZHQJAi/xtpEhJoB03oA2gIR0CusBdMK1G9dX2UKGgGR0CPLifNiYsvaAdN6ANoCEdArrEOXw9aEHV9lChoBkdAhkDOTibUgGgHTegDaAhHQK6xNl2/zrh1fZQoaAZHQI+/Kdz4k/toB03oA2gIR0CusYZIpYs/dX2UKGgGR0CPAQWBz3h5aAdN6ANoCEdArrzTS3LFGXV9lChoBkdAj0V9hRZU1mgHTegDaAhHQK69zc+JP691fZQoaAZHQIvmGE0zj3poB03oA2gIR0CuvfPsqrimdX2UKGgGR0CQG+ZCv5gxaAdN6ANoCEdArr49liBoVXV9lChoBkdAj4EdvjwQUmgHTegDaAhHQK7N6XaakRB1fZQoaAZHQI17zZnL7oBoB03oA2gIR0CuzubdBSk1dX2UKGgGR0CHSnxPO6d2aAdN6ANoCEdArs8LNB4UvnV9lChoBkdAjzuzreIl+mgHTegDaAhHQK7PU1n/T9d1fZQoaAZHQIozTrNW2gFoB03oA2gIR0Cu2tutfXwtdX2UKGgGR0CPQkBg/keZaAdN6ANoCEdArtvP8/D+BHV9lChoBkdAj6CBMi8nNWgHTegDaAhHQK7b9wQ176Z1fZQoaAZHQIZb/d43WFxoB03oA2gIR0Cu3EJIMBp6dX2UKGgGR0CO5WRjjJdTaAdN6ANoCEdAruu9IuoP1HV9lChoBkdAjl3E9+w1SGgHTegDaAhHQK7ss052hZh1fZQoaAZHQIaGBjx0+1VoB03oA2gIR0Cu7NkxREWqdX2UKGgGR0COT4GGEf1ZaAdN6ANoCEdAru0pMvh60XVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 10, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}