--- license: apache-2.0 tags: - generated_from_trainer datasets: - nyu-mll/glue metrics: - accuracy model-index: - name: albert-large-v2-finetuned-rte results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue args: rte metrics: - type: accuracy value: 0.5487364620938628 name: Accuracy --- # albert-large-v2-finetuned-rte This model is a fine-tuned version of [albert-large-v2](https://huggingface.co/albert-large-v2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6827 - Accuracy: 0.5487 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 18 | 0.6954 | 0.5271 | | No log | 2.0 | 36 | 0.6860 | 0.5379 | | No log | 3.0 | 54 | 0.6827 | 0.5487 | | No log | 4.0 | 72 | 0.7179 | 0.5235 | | No log | 5.0 | 90 | 0.7504 | 0.5379 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3