--- library_name: transformers base_model: microsoft/graphcodebert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: GraphCodeBERT-Base-Solidity-Vulnerability results: [] --- # GraphCodeBERT-Base-Solidity-Vulnerability This model is a fine-tuned version of [microsoft/graphcodebert-base](https://huggingface.co/microsoft/graphcodebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Accuracy: 1.0 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0522 | 1.0 | 4713 | 0.0101 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | | 0.0563 | 2.0 | 9426 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.0 | 3.0 | 14139 | 0.0000 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1