--- license: mit base_model: indobenchmark/indobart-v2 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bdc2024-indobartv2 results: [] --- # bdc2024-indobartv2 This model is a fine-tuned version of [indobenchmark/indobart-v2](https://huggingface.co/indobenchmark/indobart-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3023 - Accuracy: 0.7162 - Balanced Accuracy: 0.4029 - Precision: 0.7027 - Recall: 0.7162 - F1: 0.6930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:| | No log | 1.0 | 242 | 0.9849 | 0.7271 | 0.3492 | 0.6729 | 0.7271 | 0.6848 | | No log | 2.0 | 484 | 0.9894 | 0.7293 | 0.3458 | 0.6597 | 0.7293 | 0.6824 | | 0.7769 | 3.0 | 726 | 1.0067 | 0.7205 | 0.3858 | 0.6719 | 0.7205 | 0.6898 | | 0.7769 | 4.0 | 968 | 1.1637 | 0.7314 | 0.3937 | 0.7281 | 0.7314 | 0.7006 | | 0.3534 | 5.0 | 1210 | 1.3002 | 0.7358 | 0.3892 | 0.7103 | 0.7358 | 0.6999 | | 0.3534 | 6.0 | 1452 | 1.3023 | 0.7162 | 0.4029 | 0.7027 | 0.7162 | 0.6930 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.13.3