{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2366e06e70>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661279080.6931376, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "", ":serialized:": "gAWVkQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL2FuZHJlcy9STF9QUkFDVElDRS9kb29tdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEoNLT81iKq+I5D8PjknFz985xo+atWPP6gEp7832Tg+VDUQP1f6DT7QSze/QKY2PSjy6TtjRpc/PLx9PnXSVT/AmYM/cRcfQG/2q78W/gc/Xo4hv10njz29f+c/Whn0Pj1kh78foCk//ljtv0Z4h7/vWJC/t5unPtcZAj90HbC/1DQGvXxJkD3xyYe9QEjVP3RPED/MXj+8YFE3vzUIZLyTpZq/0e+UO3eGKT8BdrI8aouMvj6wsLqzUwW/M+KaPFaeIL+YtTk8wzkwvyMPR7whBnI/sy3BvyEPCj9W4nE/cgK5PTs/rr/oBpy+8mEwP0NiRz/O1MG/huUWv0t0Mr5s5li9NtsvwO7fxr52ZK4/C/6WP23wmr9TWMA+GYwfQBrkgT+QY4u/hpzhPrxlQr5LZCi/wBRGwCPpIT+ia3S/PWSHvx+gKT/+WO2/VuJxP4nwDj7A0Km+PMX8PvFsGj8YAmm/peEgvyAQOr/+nWw/TJwPPzxacLw5UcC+4Gj8PZ1U2j5ek4m/cyV2PuhlmD+Uh9s+q1sov9b2pL9g9EA+zKBHvrhyPT/kM6g+6ADzvyEGcj+zLcG/IQ8KP0Z4h7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD+gas2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA6RIKvgAAAABr5um/AAAAALzhfj0AAAAAkpn3PwAAAADDZ1K8AAAAAAca3D8AAAAACXHxvAAAAABax+a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAqCbZtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMaQYzwAAAAAK+H7vwAAAAB7t7+8AAAAAKDV5D8AAAAAY7LZvAAAAAAbCeU/AAAAADEuQb0AAAAACD77vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOrjqDQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBUOcY9AAAAAIQ/2r8AAAAA9UegPQAAAACO6Po/AAAAAJdsN7wAAAAAFzcBQAAAAAAScB29AAAAAGYf+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuBwk1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn7KIvQAAAACl7/a/AAAAAGGXqb0AAAAAsd3sPwAAAABg0bI9AAAAAL37+D8AAAAA8JdJPQAAAABC7OW/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJm+UPFvQ4WMAWyUTegDjAF0lEdAwf+hcPe54HV9lChoBkdAjcZcDKYAsGgHTegDaAhHQMH/yBJqZc91fZQoaAZHQJtnZv5xiodoB03oA2gIR0DCAHyxRl6JdX2UKGgGR0Ccu23EAHVxaAdN6ANoCEdAwgFpJEpiJHV9lChoBkdAmJldbX6InGgHTegDaAhHQMIDeZBsyi51fZQoaAZHQJI+2hpQDV9oB03oA2gIR0DCA53nlnyvdX2UKGgGR0CUxxTaTOgQaAdN6ANoCEdAwgRWB3A2ynV9lChoBkdAkX0GoaUA1mgHTegDaAhHQMIFRKwIMSd1fZQoaAZHQJGO/r2QGOdoB03jAmgIR0DCBoO63AmBdX2UKGgGR0CIpILS/j82aAdN6ANoCEdAwgdeeUY8+3V9lChoBkdAmqSfyPMjeWgHTegDaAhHQMIIO9V3ljp1fZQoaAZHQJB7bMcIZ65oB03oA2gIR0DCCSe4NI9UdX2UKGgGR0CZnnRzBAObaAdN6ANoCEdAwgphB2OhkHV9lChoBkdAl1Q/DYRNAWgHTegDaAhHQMILRZVfeDZ1fZQoaAZHQJctASL61stoB03oA2gIR0DCDCQzN2TxdX2UKGgGR0CZAQxxT850aAdN6ANoCEdAwg0T3A2ycHV9lChoBkdAl7hOVPepGWgHTegDaAhHQMIORDqW1MN1fZQoaAZHQH4jTKDCgsdoB026AWgIR0DCDsP1SOzZdX2UKGgGR0CbcOb349HMaAdN6ANoCEdAwg8dgP3BYXV9lChoBkdAmAgmWldka2gHTegDaAhHQMIP+vZ7HAB1fZQoaAZHQJYAaLQ5WBBoB03oA2gIR0DCEhyEJ0GNdX2UKGgGR0B4bqItUXHjaAdN6ANoCEdAwhKgk56t1nV9lChoBkdAmb1qLXL/0mgHTegDaAhHQMIS+hvBJqZ1fZQoaAZHQJNvYVCXyAhoB03oA2gIR0DCE9PyoXKsdX2UKGgGR0CWlM1B+nZTaAdN6ANoCEdAwhX40Mw1znV9lChoBkdAlLne10DEFWgHTegDaAhHQMIWdv4dp7F1fZQoaAZHQJbja3azu4RoB03oA2gIR0DCFtSdtl7MdX2UKGgGR0BxtR36hxo7aAdN6ANoCEdAwhevJnQIEHV9lChoBkdAjLyHL7oB72gHTegDaAhHQMIZz1gQYk51fZQoaAZHQJMV9zCDVYpoB03oA2gIR0DCGk8U/OdHdX2UKGgGR0CbAL/ACW/raAdN6ANoCEdAwhqqY51eSnV9lChoBkdAjCP0j9n9N2gHTegDaAhHQMIbgYxL0z11fZQoaAZHQJL1WHZbpvBoB03oA2gIR0DCHZbQ1JlKdX2UKGgGR0CbQBCj1wo9aAdN6ANoCEdAwh4T1YhdMXV9lChoBkdAmP3YDoyKvWgHTegDaAhHQMIebkal1r91fZQoaAZHQI73+cH4XXRoB03oA2gIR0DCH02IbfgrdX2UKGgGR0CYvtF6zE75aAdN6ANoCEdAwiFrzMibD3V9lChoBkdAl8m7Ackt3GgHTegDaAhHQMIh7o0qH451fZQoaAZHQJdnX5eqrBFoB03oA2gIR0DCIkj101ZUdX2UKGgGR0CW87S75Ec9aAdN6ANoCEdAwiMjoYekpXV9lChoBkdAkszeUyHmBGgHTegDaAhHQMIlRZSeiBZ1fZQoaAZHQJDcyAH3UQVoB03oA2gIR0DCJcTIJZ4fdX2UKGgGR0CX/b6po9LYaAdN6ANoCEdAwiYhM10knnV9lChoBkdAjReundfsu2gHTegDaAhHQMIm9LbxmTV1fZQoaAZHQJjLL7CSA6NoB03oA2gIR0DCKRIc5sCUdX2UKGgGR0CWQoILPUrkaAdN6ANoCEdAwimTY6nzhHV9lChoBkdAmSddoi9qUWgHTegDaAhHQMIp8v5pJwt1fZQoaAZHQHZcBg3Lmp5oB03oA2gIR0DCKs5CtzS1dX2UKGgGR0CI4E/wiJO4aAdN6ANoCEdAwizwy6+WW3V9lChoBkdAmP+vcN6PbWgHTegDaAhHQMItb/K6nR91fZQoaAZHQJjNpjvuw5hoB03oA2gIR0DCLcdYnv2HdX2UKGgGR0CZnXmrKeTWaAdN6ANoCEdAwi6fJIUah3V9lChoBkdAlYv95yEL6WgHTegDaAhHQMIww+kP+XJ1fZQoaAZHQI94E3n6l+FoB03oA2gIR0DCMUTwhGH6dX2UKGgGR0CZniPJJXhgaAdN6ANoCEdAwjGigNgBtHV9lChoBkdAkmeKYVqN62gHTegDaAhHQMIyeYTj/+91fZQoaAZHQJnhnFVDKHRoB03oA2gIR0DCNI/Tb349dX2UKGgGR0CTVZIS13MZaAdN6ANoCEdAwjUPu4wyqXV9lChoBkdAmpUwrH2h7GgHTegDaAhHQMI1aHWJ79h1fZQoaAZHQJkOGQ5myxBoB03oA2gIR0DCNkT/Q0GedX2UKGgGR0CZszn+AEt/aAdN6ANoCEdAwjhmfr8iwHV9lChoBkdAmyfPvrnkk2gHTegDaAhHQMI45LApKBd1fZQoaAZHQJuwHrdFfAtoB03oA2gIR0DCOT70pVjqdX2UKGgGR0B0LJle4TbnaAdN6ANoCEdAwjoWpNsWPHV9lChoBkdAmRtWBOHnEGgHTegDaAhHQMI8NIikftB1fZQoaAZHQJNo9JSR8txoB03oA2gIR0DCPLnm5lOHdX2UKGgGR0CU4TuE25xzaAdN6ANoCEdAwj0aSA6Mi3V9lChoBkdAmNzOymhufmgHTegDaAhHQMI99+QlruZ1fZQoaAZHQJqiMI4VARloB03oA2gIR0DCQA9IRRMwdX2UKGgGR0CR9OYJ3PiUaAdN6ANoCEdAwkCRBX0Xg3V9lChoBkdAmSvkGqxTsWgHTegDaAhHQMJA68rqdH51fZQoaAZHQJfTQ0xdpqRoB03oA2gIR0DCQcQob4rSdX2UKGgGR0CQv9QPZqVRaAdN6ANoCEdAwkPmHmig03V9lChoBkdAc72uwosqa2gHTegDaAhHQMJEZRQrMC91fZQoaAZHQJnRWReTmnxoB03oA2gIR0DCRL+VC5VfdX2UKGgGR0CZ5ej3mFJyaAdN6ANoCEdAwkWXilzltHV9lChoBkdAm1NwccU/OmgHTegDaAhHQMJHrzewcHZ1fZQoaAZHQJmzd3mmtQtoB03oA2gIR0DCSCuq5sj3dX2UKGgGR0CJVtA+IMz/aAdN6ANoCEdAwkiLkc0cfnV9lChoBkdAmlY8QZn+Q2gHTegDaAhHQMJJazXarWB1fZQoaAZHQHRYybUgB91oB03oA2gIR0DCS4719ORDdX2UKGgGR0CPmlnwob4raAdN6ANoCEdAwkwQRAbADnV9lChoBkdAkBUggTyrgmgHTegDaAhHQMJMb1VghKV1fZQoaAZHQHwQ/SpiqhloB03oA2gIR0DCTVZKJ2t/dX2UKGgGR0Ca4eNGmUGFaAdN6ANoCEdAwk+Qq814xHV9lChoBkdAkibU/GEPD2gHTegDaAhHQMJQFyGJvYR1fZQoaAZHQHUQ0Pxx1gZoB03oA2gIR0DCUHYPiDNAdX2UKGgGR0B4rr/sE7nxaAdN6ANoCEdAwlFaI68xsXV9lChoBkdAhXrNO/L1VmgHTegDaAhHQMJTltr0rbx1fZQoaAZHQIAvBGBnSORoB03oA2gIR0DCVCAtL+PzdX2UKGgGR0CUadC5mRNiaAdN6ANoCEdAwlR98kUsWnV9lChoBkdAjl5tR3u/lGgHTegDaAhHQMJVY7ypaRp1fZQoaAZHQINF4TufEn9oB03oA2gIR0DCV6JAKOT8dX2UKGgGR0B3i80O3DvWaAdN6ANoCEdAwlgr7sOXmnV9lChoBkdAkA2vcFhXsGgHTegDaAhHQMJYi9KmKqJ1fZQoaAZHQIiEhBPbfxdoB03oA2gIR0DCWW2b7TDwdX2UKGgGR0CMs+Ln9vS/aAdN6ANoCEdAwlupxDst03V9lChoBkdAmLttXgccVGgHTegDaAhHQMJcKn6Mzdl1fZQoaAZHQJnBN2jfvWpoB03oA2gIR0DCXISYNRWMdX2UKGgGR0CThqn003wTaAdN6ANoCEdAwl1hO3UhFHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 #1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu102", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}