# port of models described in RW # We use the bloom model as a starting point for these model. # Please refer to the bloom models for usage instructions. import math import warnings from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss from torch.nn import functional as F from transformers.modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging from configuration_RW import RWConfig from ltriton.flash_landmark_attention import fused_landmark_attention logger = logging.get_logger(__name__) # NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations. # In order not to degrade the quality of our HF-port, we keep these characteristics in the final model. class Linear(nn.Linear): def forward(self, input: torch.Tensor) -> torch.Tensor: ret = input @ self.weight.T if self.bias is None: return ret else: return ret + self.bias from einops import rearrange # rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...) def rotate_half(x): x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in torch < 1.8.0 class RotaryEmbedding(torch.nn.Module): """Implementation of RotaryEmbedding from GPT-NeoX. This implementation is design to operate on queries and keys that are compatible with [batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format). """ def __init__( self, head_dim: int, base=10000, ): super().__init__() inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim)) self.register_buffer("inv_freq", inv_freq, persistent=False) self.head_dim = head_dim self.seq_len_cached = None self.batch_size_cached = None self.cos_cached: torch.Tensor | None = None self.sin_cached: torch.Tensor | None = None def cos_sin( self, seq_len: int, device="cuda", dtype=torch.bfloat16, ) -> torch.Tensor: if seq_len != self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(seq_len, device=device).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(device) if dtype in [torch.float16, torch.bfloat16]: emb = emb.float() self.cos_cached = emb.cos()[None, :, :] self.sin_cached = emb.sin()[None, :, :] self.cos_cached = self.cos_cached.type(dtype) self.sin_cached = self.sin_cached.type(dtype) return self.cos_cached, self.sin_cached def forward(self, q, k): batch, seq_len, head_dim = q.shape cos, sin = self.cos_sin(seq_len) return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) def _make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: batch_size, target_length = input_ids_shape mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround seq_ids = torch.arange(target_length, device=device) mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] if past_key_values_length > 0: mask[:, :past_key_values_length] = False expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) return expanded_mask def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, 1, tgt_length, src_length) def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly # This is more or less identical to T5's relative position bias: # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] alibi = slopes[..., None].bfloat16() * arange_tensor return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: out = F.dropout(x, p=prob, training=training) out = residual + out return out class LandmarkGroupedSoftmaxFunction(torch.autograd.Function): # Note that forward, setup_context, and backward are @staticmethods @staticmethod def forward(ctx, x, dim, mem_cnt, resp_mem_idx): new_shape = list(x.shape) new_shape[dim] = mem_cnt # max_mem_cnt.item() max_by_group = x.new_zeros((*new_shape,)) max_by_group.scatter_reduce_(src=x, index=resp_mem_idx, dim=dim, reduce="amax", include_self=False) maxes = torch.gather(max_by_group, dim, resp_mem_idx) #x_exp = torch.exp(x - torch.where(torch.isinf(maxes), 0, maxes)) x_exp = torch.exp((x - maxes).to(torch.float32)) cumsum_by_group = torch.zeros_like(max_by_group, dtype=x_exp.dtype) cumsum_by_group.scatter_add_(dim, resp_mem_idx, x_exp, ) denom = torch.gather(cumsum_by_group, dim, resp_mem_idx) #probs = torch.where(denom < 0.5, 0, x_exp / denom) probs = x_exp / denom ctx.mem_cnt = mem_cnt ctx.dim = dim ctx.save_for_backward(resp_mem_idx, probs) return probs @staticmethod def backward(ctx, grad_probs): mem_cnt = ctx.mem_cnt dim = ctx.dim resp_mem_idx, probs = ctx.saved_tensors grad_x = grad_dim = grad_mem_cnt = grad_resp_mem_idx = None if ctx.needs_input_grad[0] or ctx.needs_input_grad[4]: grad_pair = grad_probs * probs new_shape = list(probs.shape) new_shape[dim] = mem_cnt # max_mem_cnt.item() cumsum_by_group = grad_pair.new_zeros((*new_shape,)) cumsum_by_group.scatter_add_(dim, resp_mem_idx, grad_pair) if ctx.needs_input_grad[0]: grad_sum = torch.gather(cumsum_by_group, dim, resp_mem_idx) grad_x = grad_pair - probs * grad_sum assert not ctx.needs_input_grad[1] assert not ctx.needs_input_grad[2] assert not ctx.needs_input_grad[3] return grad_x, grad_dim, grad_mem_cnt, grad_resp_mem_idx def landmark_grouped_softmax(x, dim, is_mem, last_section_mask): last_and_rest_mask = last_section_mask # | mask full_access_mask = is_mem | last_and_rest_mask max_mem_cnt = 64 mem_group_idx = torch.cumsum(is_mem, dim=dim) mem_bucket_id = max_mem_cnt - 1 resp_mem_idx = torch.where(last_and_rest_mask, max_mem_cnt - 1, torch.where(is_mem, mem_bucket_id, mem_group_idx)) probs = LandmarkGroupedSoftmaxFunction.apply(x, dim, max_mem_cnt, resp_mem_idx) new_shape = list(x.shape) new_shape[dim] = max_mem_cnt group_prob = probs.new_zeros((*new_shape, )) group_prob.scatter_(dim, torch.where(is_mem, mem_group_idx - 1, max_mem_cnt - 1), probs) probs = probs.mul(torch.where(full_access_mask, last_section_mask, torch.gather(group_prob, dim, resp_mem_idx))) return probs class Attention(nn.Module): def __init__(self, config: RWConfig): super().__init__() self.hidden_size = config.hidden_size self.num_heads = config.n_head self.head_dim = self.hidden_size // self.num_heads self.split_size = self.hidden_size self.hidden_dropout = config.hidden_dropout if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) self.maybe_rotary = RotaryEmbedding(config.head_dim) if config.rotary else lambda q, k: (q, k) # Layer-wise attention scaling self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = self.inv_norm_factor self.query_key_value = Linear( self.hidden_size, 3 * self.hidden_size if not config.multi_query else (self.hidden_size + 2 * self.head_dim), bias=config.bias, ) self.multi_query = config.multi_query self.dense = Linear(self.hidden_size, self.hidden_size, bias=config.bias) self.attention_dropout = nn.Dropout(config.attention_dropout) self.num_kv = config.n_head if not self.multi_query else 1 def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory storage as `fused_qkv` Args: fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] Returns: query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] value: [batch_size, seq_length, num_heads, head_dim] """ if not self.multi_query: batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] else: batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim) return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :] def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: """ Merge heads together over the last dimenstion Args: x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] Returns: torch.tensor: [batch_size, seq_length, num_heads * head_dim] """ # What we want to achieve is: # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim batch_size_and_num_heads, seq_length, _ = x.shape batch_size = batch_size_and_num_heads // self.num_heads # First view to decompose the batch size # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim x = x.permute(0, 2, 1, 3) # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) def forward( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, is_mem: Optional[torch.Tensor] = None, last_section_mask: Optional[torch.Tensor] = None, offload_cache_to_cpu: bool = False, use_flash: bool = False, cache_top_k: Optional[int] = None, mem_freq: Optional[int] = None ): fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, q_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) key_layer = key_layer.transpose(1, 2).reshape( batch_size * self.num_kv, q_length, self.head_dim, ) value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_kv, q_length, self.head_dim) query_layer, key_layer = self.maybe_rotary(query_layer, key_layer) if layer_past is not None: past_key, past_value = layer_past # concatenate along seq_length dimension: # - key: [batch_size * self.num_heads, head_dim, kv_length] # - value: [batch_size * self.num_heads, kv_length, head_dim] key_layer = torch.cat((past_key, key_layer), dim=1) value_layer = torch.cat((past_value, value_layer), dim=1) _, kv_length, _ = key_layer.shape if use_cache is True: present = (key_layer, value_layer) else: present = None if alibi is None: query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim) key_layer_ = key_layer.reshape(batch_size, self.num_kv, -1, self.head_dim) value_layer_ = value_layer.reshape(batch_size, self.num_kv, -1, self.head_dim) assert self.num_kv == 1 key_layer_ = key_layer_.expand(query_layer_.shape) value_layer_ = value_layer_.expand(query_layer_.shape) assert not output_attentions # not supported. assert mem_freq is not None attn_output = fused_landmark_attention(query_layer_, key_layer_, value_layer_, is_mem, block_size=mem_freq+1) # attn_output = F.scaled_dot_product_attention( # query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True # ) x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim) x = x.permute(0, 2, 1, 3) attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim) output_tensor = self.dense(attn_output) outputs = (output_tensor, present) return outputs else: attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, -1e9).to(torch.bfloat16) matmul_result = query_layer @ key_layer.transpose(-1, -2) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16 or input_dtype == torch.bfloat16: attention_scores = attention_scores.to(torch.float32) # attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) attention_probs = F.softmax( (attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)) * self.inv_norm_factor + attention_mask_float, dim=-1, dtype=hidden_states.dtype, ) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size x num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) # matmul: [batch_size * num_heads, q_length, head_dim] context_layer = attention_probs_reshaped @ value_layer # change view [batch_size, num_heads, q_length, head_dim] context_layer = self._merge_heads(context_layer) output_tensor = self.dense(context_layer) outputs = (output_tensor, present) if output_attentions: outputs += (attention_probs,) return outputs class MLP(nn.Module): def __init__(self, config: RWConfig): super().__init__() hidden_size = config.hidden_size self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size, bias=config.bias) self.act = nn.GELU() self.dense_4h_to_h = Linear(4 * hidden_size, hidden_size, bias=config.bias) self.hidden_dropout = config.hidden_dropout def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.act(self.dense_h_to_4h(x)) x = self.dense_4h_to_h(x) return x class DecoderLayer(nn.Module): def __init__(self, config: RWConfig): super().__init__() hidden_size = config.hidden_size self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.num_heads = config.n_head self.self_attention = Attention(config) if not config.parallel_attn: # unused if parallel attn self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = MLP(config) self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm self.hidden_dropout = config.hidden_dropout self.config = config def forward( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, is_mem: Optional[torch.Tensor] = None, last_section_mask: Optional[torch.Tensor] = None, offload_cache_to_cpu: bool = False, use_flash: bool = False, cache_top_k: Optional[int] = None, mem_freq: Optional[int] = None, ): layernorm_output = self.input_layernorm(hidden_states) residual = hidden_states # Self attention. attn_outputs = self.self_attention( layernorm_output, layer_past=layer_past, attention_mask=attention_mask, alibi=alibi, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, is_mem=is_mem, last_section_mask=last_section_mask, offload_cache_to_cpu=offload_cache_to_cpu, use_flash=use_flash, cache_top_k=cache_top_k, mem_freq=mem_freq ) attention_output = attn_outputs[0] if not self.config.parallel_attn: residual = dropout_add(attention_output, residual, self.config.attention_dropout, training=self.training) layernorm_output = self.post_attention_layernorm(residual) outputs = attn_outputs[1:] # MLP. mlp_output = self.mlp(layernorm_output) if self.config.parallel_attn: mlp_output += attention_output output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs # hidden_states, present, attentions class RWPreTrainedModel(PreTrainedModel): _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RWConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["DecoderLayer"] def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module: nn.Module): """Initialize the weights.""" if isinstance(module, nn.Linear) or isinstance(module, Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): if isinstance(module, RWModel): module.gradient_checkpointing = value @staticmethod def _convert_to_standard_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, num_heads, ...])) """ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape num_heads = batch_size_times_num_heads // batch_size # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size, num_heads, head_dim, seq_length), layer_past[1].view(batch_size, num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) @staticmethod def _convert_to_rw_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape batch_size_times_num_heads = batch_size * num_heads # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) class RWModel(RWPreTrainedModel): def __init__(self, config: RWConfig): super().__init__(config) self.embed_dim = config.hidden_size self.num_heads = config.n_head self.alibi = config.alibi # Embedding + LN Embedding self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) # Transformer blocks self.h = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)]) # Final Layer Norm self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def _prepare_attn_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int ) -> torch.BoolTensor: # create causal mask # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = _make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length ) # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask def set_input_embeddings(self, new_embeddings: torch.Tensor): self.word_embeddings = new_embeddings def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, offload_cache_to_cpu: Optional[bool] = None, use_flash: Optional[bool] = None, cache_top_k: Optional[int] = None, mem_freq: Optional[int] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict is_mem = None if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape if self.config.mem_id is not None: with torch.no_grad(): is_mem = input_ids == self.config.mem_id elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape if self.config.mem_id is not None: raise NotImplementedError else: raise ValueError("You have to specify either input_ids or inputs_embeds") if past_key_values is None: past_key_values = tuple([None] * len(self.h)) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) last_section_mask = None if is_mem is not None and not use_flash: is_mem = is_mem.unsqueeze(1).unsqueeze(2) current_len = input_ids.shape[1] mem_ids = torch.where(attention_mask[..., -current_len:] < -1, 0, torch.cumsum(is_mem, -1) - is_mem.int()) last_section_mask = torch.amax(mem_ids, -1, keepdim=True) == mem_ids attention_mask[..., -current_len:].masked_fill_(last_section_mask & is_mem, torch.tensor(torch.finfo(inputs_embeds.dtype).min, device=inputs_embeds.device)) last_section_mask.logical_and_(attention_mask[..., -current_len:] > -1) is_mem = is_mem.logical_and(attention_mask[..., -current_len:] > -1) hidden_states = inputs_embeds presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None # Compute alibi tensor: check build_alibi_tensor documentation seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[2] if len(past_key_values[0]) > 2: past_key_values_length += past_key_values[0][3].shape[2] * past_key_values[0][3].shape[3] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) else: attention_mask = attention_mask.to(hidden_states.device) if self.alibi: alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) else: alibi = None causal_mask = self._prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs, **kwargs): # None for past_key_value return module(*inputs, use_cache=use_cache, output_attentions=output_attentions, **kwargs) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i], use_reentrant=False, is_mem=is_mem, last_section_mask=last_section_mask, offload_cache_to_cpu=offload_cache_to_cpu, use_flash=use_flash, cache_top_k=cache_top_k, mem_freq=mem_freq, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi, is_mem=is_mem, last_section_mask=last_section_mask, offload_cache_to_cpu=offload_cache_to_cpu, use_flash=use_flash, cache_top_k=cache_top_k, mem_freq=mem_freq, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # Add last hidden state hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class RWForCausalLM(RWPreTrainedModel): _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] def __init__(self, config: RWConfig): super().__init__(config) self.transformer = RWModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.auto_insert_landmarks = False self.always_use_flash = False # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: torch.Tensor): self.lm_head = new_embeddings def set_mem_id(self, mem_id): if self.config.mem_id is not None: assert mem_id == self.config.mem_id, "Chanigng mem_id can break the model. If you really intend to do this, manually disable this check" self.config.mem_id = mem_id def enable_landmark_insertion(self): self.auto_insert_landmarks = True def enable_flash(self): self.always_use_flash = True def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, **kwargs, ) -> dict: total_len = input_ids.shape[1] # only last token for input_ids if past is not None if past: input_ids = input_ids[:, -1].unsqueeze(-1) # the cache may be in the stardard format (e.g. in contrastive search), convert to our's format if needed if past[0][0].shape[0] == input_ids.shape[0]: past = self._convert_to_rw_cache(past) use_flash = False if kwargs.get("use_flash") is not None else None else: prev_len = 0 use_flash = kwargs.get("use_flash") mem_freq = kwargs.get("mem_freq") or self.config.mem_freq if mem_freq is not None: # if position_ids is not None: # raise NotImplementedError T = input_ids.shape[1] prev_incomplete_len = prev_len % mem_freq prev_complete_len = prev_len - prev_incomplete_len incomplete_len = total_len % mem_freq new_full_len = total_len - prev_complete_len - incomplete_len prev_input, input_ids_with_mem, input_ids_without_mem = torch.split(input_ids, (prev_complete_len, new_full_len, incomplete_len), dim=-1) bsz, q_len = input_ids.size() input_ids_with_mem = input_ids_with_mem.view(bsz, -1, mem_freq) input_ids_with_mem = torch.cat( ( input_ids_with_mem, input_ids_with_mem.new_full((bsz, input_ids_with_mem.shape[1], 1), self.config.mem_id) ), dim=-1 ).view(bsz, -1) input_ids = torch.cat((prev_input, input_ids_with_mem, input_ids_without_mem), dim=-1) if attention_mask is not None: attention_mask_with_mem, attention_mask_without_mem = torch.split(attention_mask, (prev_complete_len + new_full_len, incomplete_len), dim=-1) attention_mask_with_mem = attention_mask_with_mem.view(bsz, -1, mem_freq) attention_mask_with_mem = torch.cat( ( attention_mask_with_mem, attention_mask_with_mem.new_ones((bsz, attention_mask_with_mem.shape[1], 1)) ), dim=-1 ).view(bsz, -1) attention_mask = torch.cat((attention_mask_with_mem, attention_mask_without_mem), dim=-1) input_ids = input_ids[:, prev_len:] return { "input_ids": input_ids, "past_key_values": past, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "offload_cache_to_cpu": kwargs.get("offload_cache_to_cpu"), "use_flash": use_flash, "cache_top_k": kwargs.get("cache_top_k"), "max_chunk_length": kwargs.get("max_chunk_length", 0), "mem_freq": mem_freq, "drop_last_logit_if_mem": True, } def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, offload_cache_to_cpu: Optional[bool] = None, use_flash: Optional[bool] = None, cache_top_k: Optional[int] = None, max_chunk_length: Optional[int] = 0, mem_freq: Optional[int] = None, drop_last_logit_if_mem: Optional[bool] = False, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_flash = use_flash if use_flash is not None else self.always_use_flash if self.auto_insert_landmarks: mem_freq = self.config.mem_freq assert self.config.mem_freq is not None block_size = self.config.mem_freq + 1 input_ids = input_ids.view(input_ids.shape[0], -1, block_size - 1) input_ids = torch.cat((input_ids, input_ids.new_full((input_ids.shape[0], input_ids.shape[1], 1), self.config.mem_id)), dim=-1) input_ids = input_ids.view(input_ids.shape[0], -1) if attention_mask is not None: attention_mask = attention_mask.view(attention_mask.shape[0], -1, block_size - 1) attention_mask = torch.cat((attention_mask, attention_mask.new_ones((attention_mask.shape[0], attention_mask.shape[1], 1))), dim=-1) attention_mask = attention_mask.view(attention_mask.shape[0], -1) if max_chunk_length == 0: if cache_top_k is not None: max_chunk_length = self.config.train_context_length - self.config.train_context_length % (mem_freq + 1) - (cache_top_k + 1) * (mem_freq + 1) if max_chunk_length <= 0: raise ValueError("K is too large for this model.") else: max_chunk_length = None window_len = max_chunk_length or input_ids.shape[1] if use_flash: assert window_len % (mem_freq + 1) == 0 last_logits = None for step, idx in enumerate(range(0, input_ids.shape[1], window_len)): if idx >= 1: if output_attentions or output_hidden_states: raise NotImplementedError if not use_cache: raise NotImplementedError outputs = self.transformer( input_ids[:, idx:idx + window_len], past_key_values=past_key_values, attention_mask=attention_mask[:, :idx + window_len + attention_mask.shape[1] - input_ids.shape[1]] if attention_mask is not None else None, head_mask=head_mask, ## ?? inputs_embeds=inputs_embeds[:, idx:idx + window_len] if inputs_embeds is not None else None, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, offload_cache_to_cpu=offload_cache_to_cpu, use_flash=(use_flash or self.auto_insert_landmarks), cache_top_k=cache_top_k, mem_freq=mem_freq, ) past_key_values = outputs[1] if last_logits is not None: last_logits = torch.cat((last_logits, outputs[0]), dim=-2) last_logits = outputs[0] hidden_states = last_logits if self.auto_insert_landmarks: block_size = self.config.mem_freq + 1 hidden_states = hidden_states.reshape(hidden_states.shape[0], hidden_states.shape[1] // block_size, block_size, hidden_states.shape[2]) hidden_states = hidden_states[:, :, :block_size - 1] hidden_states = hidden_states.reshape(hidden_states.shape[0], -1, hidden_states.shape[3]) if drop_last_logit_if_mem: is_any_mem = (input_ids[:, -1] == self.config.mem_id).any() are_all_mem = (input_ids[:, -1] == self.config.mem_id).all() assert is_any_mem == are_all_mem if is_any_mem: hidden_states = hidden_states[:, :-1] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() batch_size, seq_length, vocab_size = shift_logits.shape # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct( shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) ) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def _reorder_cache( self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) # Get a copy of `beam_idx` on all the devices where we need those indices. device_to_beam_idx = { past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past } reordered_past = tuple( ( layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), ) for layer_past in standardized_past ) return self._convert_to_rw_cache(reordered_past) class RWForSequenceClassification(RWPreTrainedModel): _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] def __init__(self, config: RWConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = RWModel(config) self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1 else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) class RWForTokenClassification(RWPreTrainedModel): _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] def __init__(self, config: RWConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = RWModel(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) class RWForQuestionAnswering(RWPreTrainedModel): _keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = RWModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )