--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9240890586429673 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.9205 verified: true - name: Precision Macro type: precision value: 0.8929490072058283 verified: true - name: Precision Micro type: precision value: 0.9205 verified: true - name: Precision Weighted type: precision value: 0.9211200226240503 verified: true - name: Recall Macro type: recall value: 0.8684334771873932 verified: true - name: Recall Micro type: recall value: 0.9205 verified: true - name: Recall Weighted type: recall value: 0.9205 verified: true - name: F1 Macro type: f1 value: 0.8773142078752364 verified: true - name: F1 Micro type: f1 value: 0.9205 verified: true - name: F1 Weighted type: f1 value: 0.9200675517901923 verified: true - name: loss type: loss value: 0.2167544811964035 verified: true --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2186 - Accuracy: 0.924 - F1: 0.9241 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8218 | 1.0 | 250 | 0.3165 | 0.9025 | 0.9001 | | 0.2494 | 2.0 | 500 | 0.2186 | 0.924 | 0.9241 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1