Upload folder using huggingface_hub
Browse files- handler.py +38 -21
- s2s_pipeline.py +14 -4
- test.py +7 -0
handler.py
CHANGED
|
@@ -2,9 +2,9 @@ from typing import Dict, Any, List, Generator
|
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
import logging
|
| 5 |
-
from s2s_pipeline import main,
|
| 6 |
import numpy as np
|
| 7 |
-
from queue import Queue
|
| 8 |
import threading
|
| 9 |
|
| 10 |
class EndpointHandler:
|
|
@@ -21,16 +21,19 @@ class EndpointHandler:
|
|
| 21 |
self.parler_tts_handler_kwargs,
|
| 22 |
self.melo_tts_handler_kwargs,
|
| 23 |
self.chat_tts_handler_kwargs,
|
| 24 |
-
) = get_default_arguments()
|
| 25 |
setup_logger(self.module_kwargs.log_level)
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
self.queues_and_events = initialize_queues_and_events()
|
| 36 |
|
|
@@ -54,17 +57,21 @@ class EndpointHandler:
|
|
| 54 |
# Add a new queue for collecting the final output
|
| 55 |
self.final_output_queue = Queue()
|
| 56 |
|
| 57 |
-
# Start a thread to collect the final output
|
| 58 |
-
self.output_collector_thread = threading.Thread(target=self._collect_output)
|
| 59 |
-
self.output_collector_thread.start()
|
| 60 |
-
|
| 61 |
def _collect_output(self):
|
| 62 |
while True:
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
break
|
| 67 |
-
self.final_output_queue.put(output)
|
| 68 |
|
| 69 |
def __call__(self, data: Dict[str, Any]) -> Generator[Dict[str, Any], None, None]:
|
| 70 |
"""
|
|
@@ -74,6 +81,10 @@ class EndpointHandler:
|
|
| 74 |
Returns:
|
| 75 |
Generator[Dict[str, Any], None, None]: A generator yielding output chunks from the model or pipeline.
|
| 76 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
input_type = data.get("input_type", "text")
|
| 78 |
input_data = data.get("input", "")
|
| 79 |
|
|
@@ -89,12 +100,18 @@ class EndpointHandler:
|
|
| 89 |
else:
|
| 90 |
raise ValueError(f"Unsupported input type: {input_type}")
|
| 91 |
|
| 92 |
-
#
|
|
|
|
| 93 |
while True:
|
| 94 |
chunk = self.final_output_queue.get()
|
| 95 |
-
if chunk ==
|
| 96 |
break
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
def cleanup(self):
|
| 100 |
# Stop the pipeline
|
|
|
|
| 2 |
import torch
|
| 3 |
import os
|
| 4 |
import logging
|
| 5 |
+
from s2s_pipeline import main, prepare_all_args, get_default_arguments, setup_logger, initialize_queues_and_events, build_pipeline
|
| 6 |
import numpy as np
|
| 7 |
+
from queue import Queue, Empty
|
| 8 |
import threading
|
| 9 |
|
| 10 |
class EndpointHandler:
|
|
|
|
| 21 |
self.parler_tts_handler_kwargs,
|
| 22 |
self.melo_tts_handler_kwargs,
|
| 23 |
self.chat_tts_handler_kwargs,
|
| 24 |
+
) = get_default_arguments(device='cpu', mode='none', tts='melo', stt='whisper-mlx')
|
| 25 |
setup_logger(self.module_kwargs.log_level)
|
| 26 |
|
| 27 |
+
prepare_all_args(
|
| 28 |
+
self.module_kwargs,
|
| 29 |
+
self.whisper_stt_handler_kwargs,
|
| 30 |
+
self.paraformer_stt_handler_kwargs,
|
| 31 |
+
self.language_model_handler_kwargs,
|
| 32 |
+
self.mlx_language_model_handler_kwargs,
|
| 33 |
+
self.parler_tts_handler_kwargs,
|
| 34 |
+
self.melo_tts_handler_kwargs,
|
| 35 |
+
self.chat_tts_handler_kwargs,
|
| 36 |
+
)
|
| 37 |
|
| 38 |
self.queues_and_events = initialize_queues_and_events()
|
| 39 |
|
|
|
|
| 57 |
# Add a new queue for collecting the final output
|
| 58 |
self.final_output_queue = Queue()
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
def _collect_output(self):
|
| 61 |
while True:
|
| 62 |
+
try:
|
| 63 |
+
output = self.queues_and_events['send_audio_chunks_queue'].get(timeout=5) # 2-second timeout
|
| 64 |
+
if isinstance(output, (str, bytes)) and output in (b"END", "END"):
|
| 65 |
+
self.final_output_queue.put("END")
|
| 66 |
+
break
|
| 67 |
+
elif isinstance(output, np.ndarray):
|
| 68 |
+
self.final_output_queue.put(output.tobytes())
|
| 69 |
+
else:
|
| 70 |
+
self.final_output_queue.put(output)
|
| 71 |
+
except Empty:
|
| 72 |
+
# If no output for 2 seconds, assume processing is complete
|
| 73 |
+
self.final_output_queue.put("END")
|
| 74 |
break
|
|
|
|
| 75 |
|
| 76 |
def __call__(self, data: Dict[str, Any]) -> Generator[Dict[str, Any], None, None]:
|
| 77 |
"""
|
|
|
|
| 81 |
Returns:
|
| 82 |
Generator[Dict[str, Any], None, None]: A generator yielding output chunks from the model or pipeline.
|
| 83 |
"""
|
| 84 |
+
# Start a thread to collect the final output
|
| 85 |
+
self.output_collector_thread = threading.Thread(target=self._collect_output)
|
| 86 |
+
self.output_collector_thread.start()
|
| 87 |
+
|
| 88 |
input_type = data.get("input_type", "text")
|
| 89 |
input_data = data.get("input", "")
|
| 90 |
|
|
|
|
| 100 |
else:
|
| 101 |
raise ValueError(f"Unsupported input type: {input_type}")
|
| 102 |
|
| 103 |
+
# Collect all output chunks
|
| 104 |
+
output_chunks = []
|
| 105 |
while True:
|
| 106 |
chunk = self.final_output_queue.get()
|
| 107 |
+
if chunk == "END":
|
| 108 |
break
|
| 109 |
+
output_chunks.append(chunk)
|
| 110 |
+
|
| 111 |
+
# Combine all audio chunks into a single byte string
|
| 112 |
+
combined_audio = b''.join(output_chunks)
|
| 113 |
+
|
| 114 |
+
return {"output": combined_audio}
|
| 115 |
|
| 116 |
def cleanup(self):
|
| 117 |
# Stop the pipeline
|
s2s_pipeline.py
CHANGED
|
@@ -65,8 +65,8 @@ def rename_args(args, prefix):
|
|
| 65 |
|
| 66 |
args.__dict__["gen_kwargs"] = gen_kwargs
|
| 67 |
|
| 68 |
-
def get_default_arguments():
|
| 69 |
-
|
| 70 |
ModuleArguments(),
|
| 71 |
SocketReceiverArguments(),
|
| 72 |
SocketSenderArguments(),
|
|
@@ -78,7 +78,14 @@ def get_default_arguments():
|
|
| 78 |
ParlerTTSHandlerArguments(),
|
| 79 |
MeloTTSHandlerArguments(),
|
| 80 |
ChatTTSHandlerArguments(),
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
def parse_arguments():
|
| 84 |
parser = HfArgumentParser(
|
|
@@ -241,7 +248,7 @@ def build_pipeline(
|
|
| 241 |
)
|
| 242 |
comms_handlers = [local_audio_streamer]
|
| 243 |
should_listen.set()
|
| 244 |
-
|
| 245 |
from connections.socket_receiver import SocketReceiver
|
| 246 |
from connections.socket_sender import SocketSender
|
| 247 |
|
|
@@ -261,6 +268,9 @@ def build_pipeline(
|
|
| 261 |
port=socket_sender_kwargs.send_port,
|
| 262 |
),
|
| 263 |
]
|
|
|
|
|
|
|
|
|
|
| 264 |
|
| 265 |
vad = VADHandler(
|
| 266 |
stop_event,
|
|
|
|
| 65 |
|
| 66 |
args.__dict__["gen_kwargs"] = gen_kwargs
|
| 67 |
|
| 68 |
+
def get_default_arguments(**kwargs):
|
| 69 |
+
default_args = [
|
| 70 |
ModuleArguments(),
|
| 71 |
SocketReceiverArguments(),
|
| 72 |
SocketSenderArguments(),
|
|
|
|
| 78 |
ParlerTTSHandlerArguments(),
|
| 79 |
MeloTTSHandlerArguments(),
|
| 80 |
ChatTTSHandlerArguments(),
|
| 81 |
+
]
|
| 82 |
+
# Update arguments with provided kwargs
|
| 83 |
+
for arg_obj in default_args:
|
| 84 |
+
for key, value in kwargs.items():
|
| 85 |
+
if hasattr(arg_obj, key):
|
| 86 |
+
setattr(arg_obj, key, value)
|
| 87 |
+
|
| 88 |
+
return tuple(default_args)
|
| 89 |
|
| 90 |
def parse_arguments():
|
| 91 |
parser = HfArgumentParser(
|
|
|
|
| 248 |
)
|
| 249 |
comms_handlers = [local_audio_streamer]
|
| 250 |
should_listen.set()
|
| 251 |
+
elif module_kwargs.mode == "socket":
|
| 252 |
from connections.socket_receiver import SocketReceiver
|
| 253 |
from connections.socket_sender import SocketSender
|
| 254 |
|
|
|
|
| 268 |
port=socket_sender_kwargs.send_port,
|
| 269 |
),
|
| 270 |
]
|
| 271 |
+
else:
|
| 272 |
+
comms_handlers = []
|
| 273 |
+
should_listen.set()
|
| 274 |
|
| 275 |
vad = VADHandler(
|
| 276 |
stop_event,
|
test.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from handler import EndpointHandler
|
| 2 |
+
|
| 3 |
+
endpoint = EndpointHandler('')
|
| 4 |
+
|
| 5 |
+
for x in endpoint({'text': 'how are you?'}):
|
| 6 |
+
print('passed')
|
| 7 |
+
print(x)
|