ammr commited on
Commit
3478209
·
1 Parent(s): 36ffdff

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.09 +/- 0.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:845066387c395e96ba5a971a847f9ce7d0aa41e90f4d5dd0c205e2c31139c06f
3
+ size 109525
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f893c214790>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7f893c212e40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
15
+ "log_std_init": -2,
16
+ "ortho_init": false,
17
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
18
+ "optimizer_kwargs": {
19
+ "alpha": 0.99,
20
+ "eps": 1e-05,
21
+ "weight_decay": 0
22
+ }
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
26
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
27
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
28
+ "_shape": null,
29
+ "dtype": null,
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 3
38
+ ],
39
+ "low": "[-1. -1. -1.]",
40
+ "high": "[1. 1. 1.]",
41
+ "bounded_below": "[ True True True]",
42
+ "bounded_above": "[ True True True]",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 4,
46
+ "num_timesteps": 1000000,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678694463020864619,
52
+ "learning_rate": 0.00096,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'collections.OrderedDict'>",
60
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwS3ePq7gI7r1ZA0/wS3ePq7gI7r1ZA0/wS3ePq7gI7r1ZA0/wS3ePq7gI7r1ZA0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1NpovtXMjL9v/co+9BhwvwTLnj9VmEi+K18wv4N8kz8DVyQ/7ZCuvl4Zpb/GuLK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBLd4+ruAjuvVkDT8TF7A9Rk/zuqvhjD3BLd4+ruAjuvVkDT8TF7A9Rk/zuqvhjD3BLd4+ruAjuvVkDT8TF7A9Rk/zuqvhjD3BLd4+ruAjuvVkDT8TF7A9Rk/zuqvhjD2UaA5LBEsGhpRoEnSUUpR1Lg==",
61
+ "achieved_goal": "[[ 0.43394282 -0.00062514 0.55232173]\n [ 0.43394282 -0.00062514 0.55232173]\n [ 0.43394282 -0.00062514 0.55232173]\n [ 0.43394282 -0.00062514 0.55232173]]",
62
+ "desired_goal": "[[-0.22739726 -1.100001 0.3964648 ]\n [-0.93788075 1.2405705 -0.1958936 ]\n [-0.68895215 1.1522373 0.6419527 ]\n [-0.34094945 -1.2898366 -0.34906596]]",
63
+ "observation": "[[ 0.43394282 -0.00062514 0.55232173 0.08598151 -0.00185631 0.0687898 ]\n [ 0.43394282 -0.00062514 0.55232173 0.08598151 -0.00185631 0.0687898 ]\n [ 0.43394282 -0.00062514 0.55232173 0.08598151 -0.00185631 0.0687898 ]\n [ 0.43394282 -0.00062514 0.55232173 0.08598151 -0.00185631 0.0687898 ]]"
64
+ },
65
+ "_last_episode_starts": {
66
+ ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
68
+ },
69
+ "_last_original_obs": {
70
+ ":type:": "<class 'collections.OrderedDict'>",
71
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4Y3/PR7qojwn16Q8l+kGPkYEpD3sDiE+mwB4PbJ2kD0+uCg95xrnPbPWuz1scT89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
72
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
73
+ "desired_goal": "[[0.12478233 0.01988703 0.02012212]\n [0.13175045 0.08008628 0.15728348]\n [0.06054745 0.07053889 0.04119133]\n [0.11284428 0.0917181 0.04673903]]",
74
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
75
+ },
76
+ "_episode_num": 0,
77
+ "use_sde": true,
78
+ "sde_sample_freq": -1,
79
+ "_current_progress_remaining": 0.0,
80
+ "ep_info_buffer": {
81
+ ":type:": "<class 'collections.deque'>",
82
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM6ZgjbPp57+UhpRSlIwBbJRLMowBdJRHQKzjf3nIQvp1fZQoaAZoCWgPQwhe9utOd97xv5SGlFKUaBVLMmgWR0Cs4yAUcn3MdX2UKGgGaAloD0MI8L4qFyo/8L+UhpRSlGgVSzJoFkdArOLTdSEUTXV9lChoBmgJaA9DCJIf8SvWsPm/lIaUUpRoFUsyaBZHQKzik6XjU/h1fZQoaAZoCWgPQwggY+5aQr75v5SGlFKUaBVLMmgWR0Cs5X8vugHvdX2UKGgGaAloD0MIhq5EoPrH87+UhpRSlGgVSzJoFkdArOUfvphWo3V9lChoBmgJaA9DCAqeQq7Uc/S/lIaUUpRoFUsyaBZHQKzk02nbZe11fZQoaAZoCWgPQwiPHVTiOkb6v5SGlFKUaBVLMmgWR0Cs5JNqQA+7dX2UKGgGaAloD0MIyOvBpPj49r+UhpRSlGgVSzJoFkdArOdpt3wCsHV9lChoBmgJaA9DCAgiizTxTgLAlIaUUpRoFUsyaBZHQKznClJpWWB1fZQoaAZoCWgPQwj3PeqvV3gBwJSGlFKUaBVLMmgWR0Cs5r3Y150KdX2UKGgGaAloD0MIdsb3xaUq9b+UhpRSlGgVSzJoFkdArOZ+BBiTdXV9lChoBmgJaA9DCJg0RuuoKvS/lIaUUpRoFUsyaBZHQKzpZkNnXd11fZQoaAZoCWgPQwjDuvHuyFj0v5SGlFKUaBVLMmgWR0Cs6QbHIZIhdX2UKGgGaAloD0MIFLGIYYfx+r+UhpRSlGgVSzJoFkdArOi6X+l0o3V9lChoBmgJaA9DCD57LlOTIPK/lIaUUpRoFUsyaBZHQKzoenivPkd1fZQoaAZoCWgPQwgpQup29pXnv5SGlFKUaBVLMmgWR0Cs6pD+R5kcdX2UKGgGaAloD0MIEjC6vDlc7L+UhpRSlGgVSzJoFkdArOowUahpQHV9lChoBmgJaA9DCBbbpKKx9vS/lIaUUpRoFUsyaBZHQKzp4wOe8PF1fZQoaAZoCWgPQwjFdYwrLg7pv5SGlFKUaBVLMmgWR0Cs6aJC0F8pdX2UKGgGaAloD0MIDvj8MEJ457+UhpRSlGgVSzJoFkdArOvJhScbznV9lChoBmgJaA9DCG+df7vsl/i/lIaUUpRoFUsyaBZHQKzraRT0g8t1fZQoaAZoCWgPQwiqQ26GG3Dqv5SGlFKUaBVLMmgWR0Cs6xvjn3cpdX2UKGgGaAloD0MIzeSbbW6M+L+UhpRSlGgVSzJoFkdArOrbL+xW1nV9lChoBmgJaA9DCF3F4jeFFeW/lIaUUpRoFUsyaBZHQKztvev6j351fZQoaAZoCWgPQwhcHJWbqOXwv5SGlFKUaBVLMmgWR0Cs7V/WlMyrdX2UKGgGaAloD0MIkSv1LAil87+UhpRSlGgVSzJoFkdArO0TZ6D5CXV9lChoBmgJaA9DCBjNyvYhbwLAlIaUUpRoFUsyaBZHQKzs04y44Id1fZQoaAZoCWgPQwgf8parH5vwv5SGlFKUaBVLMmgWR0Cs76HyNGVidX2UKGgGaAloD0MIcET3rGs07b+UhpRSlGgVSzJoFkdArO9CcslLOHV9lChoBmgJaA9DCKMBvAUSVPm/lIaUUpRoFUsyaBZHQKzu9g62fCh1fZQoaAZoCWgPQwhCe/Xx0Hfpv5SGlFKUaBVLMmgWR0Cs7rX4j8k2dX2UKGgGaAloD0MI3+ALk6lC97+UhpRSlGgVSzJoFkdArPGYX9BKMHV9lChoBmgJaA9DCOy+Y3jsp/6/lIaUUpRoFUsyaBZHQKzxOP4mCy11fZQoaAZoCWgPQwhr14S0xqD1v5SGlFKUaBVLMmgWR0Cs8OxrzoU0dX2UKGgGaAloD0MIca5hhsYT9r+UhpRSlGgVSzJoFkdArPCszl90BHV9lChoBmgJaA9DCFIMkGgCRfm/lIaUUpRoFUsyaBZHQKzzl+4smOV1fZQoaAZoCWgPQwjxtz1BYjvrv5SGlFKUaBVLMmgWR0Cs8zicPOIJdX2UKGgGaAloD0MITwRxHk4g8r+UhpRSlGgVSzJoFkdArPLsJBw++3V9lChoBmgJaA9DCA9gkV8/xOy/lIaUUpRoFUsyaBZHQKzyrKGL1mJ1fZQoaAZoCWgPQwjxLhfxnZjjv5SGlFKUaBVLMmgWR0Cs9ZvYe1a4dX2UKGgGaAloD0MIPxwkRPmC6b+UhpRSlGgVSzJoFkdArPU8hePaMHV9lChoBmgJaA9DCHxGIjSCTfW/lIaUUpRoFUsyaBZHQKz07+CsfaJ1fZQoaAZoCWgPQwi0ykxp/W3wv5SGlFKUaBVLMmgWR0Cs9LA/cFhYdX2UKGgGaAloD0MISkIibeNP7r+UhpRSlGgVSzJoFkdArPd/hESdv3V9lChoBmgJaA9DCJKXNbHAV/C/lIaUUpRoFUsyaBZHQKz3HxffGdZ1fZQoaAZoCWgPQwiXVdgMcMHrv5SGlFKUaBVLMmgWR0Cs9tLTpgTidX2UKGgGaAloD0MIhCnKpfGL+L+UhpRSlGgVSzJoFkdArPaSGBWge3V9lChoBmgJaA9DCMqJdhVS/uO/lIaUUpRoFUsyaBZHQKz40pMpPRB1fZQoaAZoCWgPQwglIvyLoLHzv5SGlFKUaBVLMmgWR0Cs+HLN4Z/DdX2UKGgGaAloD0MIuOUjKelh87+UhpRSlGgVSzJoFkdArPglg4Otn3V9lChoBmgJaA9DCKotdZDXg++/lIaUUpRoFUsyaBZHQKz35NATqSp1fZQoaAZoCWgPQwi/RLx1/u3yv5SGlFKUaBVLMmgWR0Cs+fy6+WWydX2UKGgGaAloD0MIXaW762zI7r+UhpRSlGgVSzJoFkdArPmcKw6hg3V9lChoBmgJaA9DCPSKpx5p8ADAlIaUUpRoFUsyaBZHQKz5TtP557h1fZQoaAZoCWgPQwiKyLCKN7Llv5SGlFKUaBVLMmgWR0Cs+Q4b83uNdX2UKGgGaAloD0MIV89J7xsf8r+UhpRSlGgVSzJoFkdArPsg/C66KHV9lChoBmgJaA9DCIL/rWTHhvS/lIaUUpRoFUsyaBZHQKz6wDwH7gt1fZQoaAZoCWgPQwj8AQ8MIHziv5SGlFKUaBVLMmgWR0Cs+nLg4wRHdX2UKGgGaAloD0MIeXdkrDb/7b+UhpRSlGgVSzJoFkdArPoyL0jC53V9lChoBmgJaA9DCFvptdlYid+/lIaUUpRoFUsyaBZHQKz8VktEofF1fZQoaAZoCWgPQwjB/YAHBhDov5SGlFKUaBVLMmgWR0Cs+/WMCLdfdX2UKGgGaAloD0MIwAgaM4n65L+UhpRSlGgVSzJoFkdArPuoOtnwonV9lChoBmgJaA9DCC0HeqhtwwHAlIaUUpRoFUsyaBZHQKz7Z0Zm7J51fZQoaAZoCWgPQwgktybdlkjuv5SGlFKUaBVLMmgWR0Cs/W9PDYRNdX2UKGgGaAloD0MIlpf8T/7u4r+UhpRSlGgVSzJoFkdArP0Ot6ol2XV9lChoBmgJaA9DCN481SE3w+2/lIaUUpRoFUsyaBZHQKz8wSteUpx1fZQoaAZoCWgPQwgkmdU73A7rv5SGlFKUaBVLMmgWR0Cs/IBhpg1FdX2UKGgGaAloD0MIKxcq/1re4b+UhpRSlGgVSzJoFkdArP9al7+kxnV9lChoBmgJaA9DCGngRzXsd/S/lIaUUpRoFUsyaBZHQKz++x3V0911fZQoaAZoCWgPQwgbuW5KeS3sv5SGlFKUaBVLMmgWR0Cs/q7pV0cPdX2UKGgGaAloD0MIW7OVl/xP+b+UhpRSlGgVSzJoFkdArP5ujoIOY3V9lChoBmgJaA9DCPfnoiHj0fO/lIaUUpRoFUsyaBZHQK0BNm6oVEd1fZQoaAZoCWgPQwi6L2e2KzTyv5SGlFKUaBVLMmgWR0CtANdqDbrUdX2UKGgGaAloD0MIdsJLcOqD6b+UhpRSlGgVSzJoFkdArQCKnLq2SnV9lChoBmgJaA9DCGu3XWiu0/a/lIaUUpRoFUsyaBZHQK0AStTUAkt1fZQoaAZoCWgPQwiqRUQxeYPkv5SGlFKUaBVLMmgWR0CtAzyXD3uedX2UKGgGaAloD0MI3xtDAHBs5b+UhpRSlGgVSzJoFkdArQLcrK/203V9lChoBmgJaA9DCIrNx7WhYua/lIaUUpRoFUsyaBZHQK0CkIInjQ11fZQoaAZoCWgPQwhiSE4mbhXxv5SGlFKUaBVLMmgWR0CtAlAyVObidX2UKGgGaAloD0MI+RIqOLwg67+UhpRSlGgVSzJoFkdArQUYSteUp3V9lChoBmgJaA9DCKc+kLxzKPK/lIaUUpRoFUsyaBZHQK0EuHZbpvB1fZQoaAZoCWgPQwhOmZtvRPfbv5SGlFKUaBVLMmgWR0CtBGvwNLDidX2UKGgGaAloD0MI9WbUfJU8A8CUhpRSlGgVSzJoFkdArQQrot+TeXV9lChoBmgJaA9DCH3mrE85JvC/lIaUUpRoFUsyaBZHQK0HBYf4h2Z1fZQoaAZoCWgPQwhj0t9L4cHqv5SGlFKUaBVLMmgWR0CtBqX4j8k2dX2UKGgGaAloD0MIzxH5LqUu+b+UhpRSlGgVSzJoFkdArQZZeRgZ0nV9lChoBmgJaA9DCAN64c6FEfS/lIaUUpRoFUsyaBZHQK0GGbxVhkR1fZQoaAZoCWgPQwjsTKHzGjvrv5SGlFKUaBVLMmgWR0CtCOv8qFyrdX2UKGgGaAloD0MI9iaG5GRi5b+UhpRSlGgVSzJoFkdArQiLs6aLGnV9lChoBmgJaA9DCGQ6dHrezfG/lIaUUpRoFUsyaBZHQK0IPnL7oB91fZQoaAZoCWgPQwhQxvgwe1nwv5SGlFKUaBVLMmgWR0CtB/21+iJwdX2UKGgGaAloD0MI3e7lPjmK67+UhpRSlGgVSzJoFkdArQoJcJMQE3V9lChoBmgJaA9DCLqe6LrwA+y/lIaUUpRoFUsyaBZHQK0JqPLgXM11fZQoaAZoCWgPQwjaq4+Hvrviv5SGlFKUaBVLMmgWR0CtCVua4MF2dX2UKGgGaAloD0MIkBFQ4QiS/L+UhpRSlGgVSzJoFkdArQkayOaOP3V9lChoBmgJaA9DCB2vQPSkTOO/lIaUUpRoFUsyaBZHQK0LLCP6sQx1fZQoaAZoCWgPQwiuYYbGE4Hyv5SGlFKUaBVLMmgWR0CtCsuQZGaydX2UKGgGaAloD0MIfLWjOEcd/L+UhpRSlGgVSzJoFkdArQp+IdlunHV9lChoBmgJaA9DCDy858ByhOe/lIaUUpRoFUsyaBZHQK0KPYnOSnt1ZS4="
83
+ },
84
+ "ep_success_buffer": {
85
+ ":type:": "<class 'collections.deque'>",
86
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
87
+ },
88
+ "_n_updates": 31250,
89
+ "n_steps": 8,
90
+ "gamma": 0.99,
91
+ "gae_lambda": 0.9,
92
+ "ent_coef": 0.0,
93
+ "vf_coef": 0.4,
94
+ "max_grad_norm": 0.5,
95
+ "normalize_advantage": false
96
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68f8471781b23cf57d70358fde68c48f482fbd3378fe6fe594da3716d61cc1e4
3
+ size 45438
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:903dbbfd405d2330441792226ada4a9ae2aa99cb1f341ea72a8e924caabefc48
3
+ size 46718
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f893c214790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f893c212e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678694463020864619, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAwS3ePq7gI7r1ZA0/wS3ePq7gI7r1ZA0/wS3ePq7gI7r1ZA0/wS3ePq7gI7r1ZA0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1NpovtXMjL9v/co+9BhwvwTLnj9VmEi+K18wv4N8kz8DVyQ/7ZCuvl4Zpb/GuLK+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADBLd4+ruAjuvVkDT8TF7A9Rk/zuqvhjD3BLd4+ruAjuvVkDT8TF7A9Rk/zuqvhjD3BLd4+ruAjuvVkDT8TF7A9Rk/zuqvhjD3BLd4+ruAjuvVkDT8TF7A9Rk/zuqvhjD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43394282 -0.00062514 0.55232173]\n [ 0.43394282 -0.00062514 0.55232173]\n [ 0.43394282 -0.00062514 0.55232173]\n [ 0.43394282 -0.00062514 0.55232173]]", "desired_goal": "[[-0.22739726 -1.100001 0.3964648 ]\n [-0.93788075 1.2405705 -0.1958936 ]\n [-0.68895215 1.1522373 0.6419527 ]\n [-0.34094945 -1.2898366 -0.34906596]]", "observation": "[[ 0.43394282 -0.00062514 0.55232173 0.08598151 -0.00185631 0.0687898 ]\n [ 0.43394282 -0.00062514 0.55232173 0.08598151 -0.00185631 0.0687898 ]\n [ 0.43394282 -0.00062514 0.55232173 0.08598151 -0.00185631 0.0687898 ]\n [ 0.43394282 -0.00062514 0.55232173 0.08598151 -0.00185631 0.0687898 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4Y3/PR7qojwn16Q8l+kGPkYEpD3sDiE+mwB4PbJ2kD0+uCg95xrnPbPWuz1scT89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[0.12478233 0.01988703 0.02012212]\n [0.13175045 0.08008628 0.15728348]\n [0.06054745 0.07053889 0.04119133]\n [0.11284428 0.0917181 0.04673903]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM6ZgjbPp57+UhpRSlIwBbJRLMowBdJRHQKzjf3nIQvp1fZQoaAZoCWgPQwhe9utOd97xv5SGlFKUaBVLMmgWR0Cs4yAUcn3MdX2UKGgGaAloD0MI8L4qFyo/8L+UhpRSlGgVSzJoFkdArOLTdSEUTXV9lChoBmgJaA9DCJIf8SvWsPm/lIaUUpRoFUsyaBZHQKzik6XjU/h1fZQoaAZoCWgPQwggY+5aQr75v5SGlFKUaBVLMmgWR0Cs5X8vugHvdX2UKGgGaAloD0MIhq5EoPrH87+UhpRSlGgVSzJoFkdArOUfvphWo3V9lChoBmgJaA9DCAqeQq7Uc/S/lIaUUpRoFUsyaBZHQKzk02nbZe11fZQoaAZoCWgPQwiPHVTiOkb6v5SGlFKUaBVLMmgWR0Cs5JNqQA+7dX2UKGgGaAloD0MIyOvBpPj49r+UhpRSlGgVSzJoFkdArOdpt3wCsHV9lChoBmgJaA9DCAgiizTxTgLAlIaUUpRoFUsyaBZHQKznClJpWWB1fZQoaAZoCWgPQwj3PeqvV3gBwJSGlFKUaBVLMmgWR0Cs5r3Y150KdX2UKGgGaAloD0MIdsb3xaUq9b+UhpRSlGgVSzJoFkdArOZ+BBiTdXV9lChoBmgJaA9DCJg0RuuoKvS/lIaUUpRoFUsyaBZHQKzpZkNnXd11fZQoaAZoCWgPQwjDuvHuyFj0v5SGlFKUaBVLMmgWR0Cs6QbHIZIhdX2UKGgGaAloD0MIFLGIYYfx+r+UhpRSlGgVSzJoFkdArOi6X+l0o3V9lChoBmgJaA9DCD57LlOTIPK/lIaUUpRoFUsyaBZHQKzoenivPkd1fZQoaAZoCWgPQwgpQup29pXnv5SGlFKUaBVLMmgWR0Cs6pD+R5kcdX2UKGgGaAloD0MIEjC6vDlc7L+UhpRSlGgVSzJoFkdArOowUahpQHV9lChoBmgJaA9DCBbbpKKx9vS/lIaUUpRoFUsyaBZHQKzp4wOe8PF1fZQoaAZoCWgPQwjFdYwrLg7pv5SGlFKUaBVLMmgWR0Cs6aJC0F8pdX2UKGgGaAloD0MIDvj8MEJ457+UhpRSlGgVSzJoFkdArOvJhScbznV9lChoBmgJaA9DCG+df7vsl/i/lIaUUpRoFUsyaBZHQKzraRT0g8t1fZQoaAZoCWgPQwiqQ26GG3Dqv5SGlFKUaBVLMmgWR0Cs6xvjn3cpdX2UKGgGaAloD0MIzeSbbW6M+L+UhpRSlGgVSzJoFkdArOrbL+xW1nV9lChoBmgJaA9DCF3F4jeFFeW/lIaUUpRoFUsyaBZHQKztvev6j351fZQoaAZoCWgPQwhcHJWbqOXwv5SGlFKUaBVLMmgWR0Cs7V/WlMyrdX2UKGgGaAloD0MIkSv1LAil87+UhpRSlGgVSzJoFkdArO0TZ6D5CXV9lChoBmgJaA9DCBjNyvYhbwLAlIaUUpRoFUsyaBZHQKzs04y44Id1fZQoaAZoCWgPQwgf8parH5vwv5SGlFKUaBVLMmgWR0Cs76HyNGVidX2UKGgGaAloD0MIcET3rGs07b+UhpRSlGgVSzJoFkdArO9CcslLOHV9lChoBmgJaA9DCKMBvAUSVPm/lIaUUpRoFUsyaBZHQKzu9g62fCh1fZQoaAZoCWgPQwhCe/Xx0Hfpv5SGlFKUaBVLMmgWR0Cs7rX4j8k2dX2UKGgGaAloD0MI3+ALk6lC97+UhpRSlGgVSzJoFkdArPGYX9BKMHV9lChoBmgJaA9DCOy+Y3jsp/6/lIaUUpRoFUsyaBZHQKzxOP4mCy11fZQoaAZoCWgPQwhr14S0xqD1v5SGlFKUaBVLMmgWR0Cs8OxrzoU0dX2UKGgGaAloD0MIca5hhsYT9r+UhpRSlGgVSzJoFkdArPCszl90BHV9lChoBmgJaA9DCFIMkGgCRfm/lIaUUpRoFUsyaBZHQKzzl+4smOV1fZQoaAZoCWgPQwjxtz1BYjvrv5SGlFKUaBVLMmgWR0Cs8zicPOIJdX2UKGgGaAloD0MITwRxHk4g8r+UhpRSlGgVSzJoFkdArPLsJBw++3V9lChoBmgJaA9DCA9gkV8/xOy/lIaUUpRoFUsyaBZHQKzyrKGL1mJ1fZQoaAZoCWgPQwjxLhfxnZjjv5SGlFKUaBVLMmgWR0Cs9ZvYe1a4dX2UKGgGaAloD0MIPxwkRPmC6b+UhpRSlGgVSzJoFkdArPU8hePaMHV9lChoBmgJaA9DCHxGIjSCTfW/lIaUUpRoFUsyaBZHQKz07+CsfaJ1fZQoaAZoCWgPQwi0ykxp/W3wv5SGlFKUaBVLMmgWR0Cs9LA/cFhYdX2UKGgGaAloD0MISkIibeNP7r+UhpRSlGgVSzJoFkdArPd/hESdv3V9lChoBmgJaA9DCJKXNbHAV/C/lIaUUpRoFUsyaBZHQKz3HxffGdZ1fZQoaAZoCWgPQwiXVdgMcMHrv5SGlFKUaBVLMmgWR0Cs9tLTpgTidX2UKGgGaAloD0MIhCnKpfGL+L+UhpRSlGgVSzJoFkdArPaSGBWge3V9lChoBmgJaA9DCMqJdhVS/uO/lIaUUpRoFUsyaBZHQKz40pMpPRB1fZQoaAZoCWgPQwglIvyLoLHzv5SGlFKUaBVLMmgWR0Cs+HLN4Z/DdX2UKGgGaAloD0MIuOUjKelh87+UhpRSlGgVSzJoFkdArPglg4Otn3V9lChoBmgJaA9DCKotdZDXg++/lIaUUpRoFUsyaBZHQKz35NATqSp1fZQoaAZoCWgPQwi/RLx1/u3yv5SGlFKUaBVLMmgWR0Cs+fy6+WWydX2UKGgGaAloD0MIXaW762zI7r+UhpRSlGgVSzJoFkdArPmcKw6hg3V9lChoBmgJaA9DCPSKpx5p8ADAlIaUUpRoFUsyaBZHQKz5TtP557h1fZQoaAZoCWgPQwiKyLCKN7Llv5SGlFKUaBVLMmgWR0Cs+Q4b83uNdX2UKGgGaAloD0MIV89J7xsf8r+UhpRSlGgVSzJoFkdArPsg/C66KHV9lChoBmgJaA9DCIL/rWTHhvS/lIaUUpRoFUsyaBZHQKz6wDwH7gt1fZQoaAZoCWgPQwj8AQ8MIHziv5SGlFKUaBVLMmgWR0Cs+nLg4wRHdX2UKGgGaAloD0MIeXdkrDb/7b+UhpRSlGgVSzJoFkdArPoyL0jC53V9lChoBmgJaA9DCFvptdlYid+/lIaUUpRoFUsyaBZHQKz8VktEofF1fZQoaAZoCWgPQwjB/YAHBhDov5SGlFKUaBVLMmgWR0Cs+/WMCLdfdX2UKGgGaAloD0MIwAgaM4n65L+UhpRSlGgVSzJoFkdArPuoOtnwonV9lChoBmgJaA9DCC0HeqhtwwHAlIaUUpRoFUsyaBZHQKz7Z0Zm7J51fZQoaAZoCWgPQwgktybdlkjuv5SGlFKUaBVLMmgWR0Cs/W9PDYRNdX2UKGgGaAloD0MIlpf8T/7u4r+UhpRSlGgVSzJoFkdArP0Ot6ol2XV9lChoBmgJaA9DCN481SE3w+2/lIaUUpRoFUsyaBZHQKz8wSteUpx1fZQoaAZoCWgPQwgkmdU73A7rv5SGlFKUaBVLMmgWR0Cs/IBhpg1FdX2UKGgGaAloD0MIKxcq/1re4b+UhpRSlGgVSzJoFkdArP9al7+kxnV9lChoBmgJaA9DCGngRzXsd/S/lIaUUpRoFUsyaBZHQKz++x3V0911fZQoaAZoCWgPQwgbuW5KeS3sv5SGlFKUaBVLMmgWR0Cs/q7pV0cPdX2UKGgGaAloD0MIW7OVl/xP+b+UhpRSlGgVSzJoFkdArP5ujoIOY3V9lChoBmgJaA9DCPfnoiHj0fO/lIaUUpRoFUsyaBZHQK0BNm6oVEd1fZQoaAZoCWgPQwi6L2e2KzTyv5SGlFKUaBVLMmgWR0CtANdqDbrUdX2UKGgGaAloD0MIdsJLcOqD6b+UhpRSlGgVSzJoFkdArQCKnLq2SnV9lChoBmgJaA9DCGu3XWiu0/a/lIaUUpRoFUsyaBZHQK0AStTUAkt1fZQoaAZoCWgPQwiqRUQxeYPkv5SGlFKUaBVLMmgWR0CtAzyXD3uedX2UKGgGaAloD0MI3xtDAHBs5b+UhpRSlGgVSzJoFkdArQLcrK/203V9lChoBmgJaA9DCIrNx7WhYua/lIaUUpRoFUsyaBZHQK0CkIInjQ11fZQoaAZoCWgPQwhiSE4mbhXxv5SGlFKUaBVLMmgWR0CtAlAyVObidX2UKGgGaAloD0MI+RIqOLwg67+UhpRSlGgVSzJoFkdArQUYSteUp3V9lChoBmgJaA9DCKc+kLxzKPK/lIaUUpRoFUsyaBZHQK0EuHZbpvB1fZQoaAZoCWgPQwhOmZtvRPfbv5SGlFKUaBVLMmgWR0CtBGvwNLDidX2UKGgGaAloD0MI9WbUfJU8A8CUhpRSlGgVSzJoFkdArQQrot+TeXV9lChoBmgJaA9DCH3mrE85JvC/lIaUUpRoFUsyaBZHQK0HBYf4h2Z1fZQoaAZoCWgPQwhj0t9L4cHqv5SGlFKUaBVLMmgWR0CtBqX4j8k2dX2UKGgGaAloD0MIzxH5LqUu+b+UhpRSlGgVSzJoFkdArQZZeRgZ0nV9lChoBmgJaA9DCAN64c6FEfS/lIaUUpRoFUsyaBZHQK0GGbxVhkR1fZQoaAZoCWgPQwjsTKHzGjvrv5SGlFKUaBVLMmgWR0CtCOv8qFyrdX2UKGgGaAloD0MI9iaG5GRi5b+UhpRSlGgVSzJoFkdArQiLs6aLGnV9lChoBmgJaA9DCGQ6dHrezfG/lIaUUpRoFUsyaBZHQK0IPnL7oB91fZQoaAZoCWgPQwhQxvgwe1nwv5SGlFKUaBVLMmgWR0CtB/21+iJwdX2UKGgGaAloD0MI3e7lPjmK67+UhpRSlGgVSzJoFkdArQoJcJMQE3V9lChoBmgJaA9DCLqe6LrwA+y/lIaUUpRoFUsyaBZHQK0JqPLgXM11fZQoaAZoCWgPQwjaq4+Hvrviv5SGlFKUaBVLMmgWR0CtCVua4MF2dX2UKGgGaAloD0MIkBFQ4QiS/L+UhpRSlGgVSzJoFkdArQkayOaOP3V9lChoBmgJaA9DCB2vQPSkTOO/lIaUUpRoFUsyaBZHQK0LLCP6sQx1fZQoaAZoCWgPQwiuYYbGE4Hyv5SGlFKUaBVLMmgWR0CtCsuQZGaydX2UKGgGaAloD0MIfLWjOEcd/L+UhpRSlGgVSzJoFkdArQp+IdlunHV9lChoBmgJaA9DCDy858ByhOe/lIaUUpRoFUsyaBZHQK0KPYnOSnt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (356 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.0869393012253568, "std_reward": 0.284774650055019, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T09:03:08.475230"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de0a6d47c07e8369b7029ca679384afad1962419ab89892a70fcfdb1210792a5
3
+ size 3056