--- language: - en - de - fr - it - pt - hi - es - th base_model: meta-llama/Llama-3.1-8B-Instruct pipeline_tag: text-generation tags: - llama-3 - text-generation-inference - llama --- # Sera Llama v0.1 This a finetune of Llama3.1-8B on custom tool call to be used as an agent for a personal assistant, network admin. It generates structured outputs with a tool call based on the user's input, without the need to add lengthy system message. ## How to use ### Use with transformers ```python # pip install -U accelerate bitsandbytes import transformers tokenizer = transformers.AutoTokenizer.from_pretrained("Sera-Network/sera-llama-3.1-8b-0.1") # 4-bit quantization to run on smaller gpus model = transformers.AutoModelForCausalLM.from_pretrained("Sera-Network/sera-llama-3.1-8b-0.1", device_map="auto", quantization_config=transformers.BitsAndBytesConfig(load_in_4bit=True)) # Warm up the model input_ids = tokenizer.apply_chat_template([{"role": "user", "content": "What's the capital of France?"}], add_generation_prompt=True, return_tensors='pt').to('cuda') output = model.generate(input_ids, do_sample=False, max_new_tokens=128) preds = output[:, input_ids.shape[1]:] text = tokenizer.decode(preds[0], skip_special_tokens=True) # Create a helper function to generate text based on user input def generate(user_input: str): input_ids = tokenizer.apply_chat_template([{"role": "user", "content": user_input}], add_generation_prompt=True, return_tensors='pt').to('cuda') output = model.generate(input_ids, do_sample=False, max_new_tokens=128) preds = output[:, input_ids.shape[1]:] text = tokenizer.decode(preds[0], skip_special_tokens=True) return text ``` ## Example output ```python generate("What's the capital of Swizerland and Germany?") # The capital of Switzerland is Bern. The capital of Germany is Berlin. generate("Set up a host for the domain symbiont.me") # [{"name": "add_host", "parameters": {"hostname": "symbiont.me"}}] generate("Send an email to my friend Andrej wishing him a happy birthday.") # [{"name": "send_email", "parameters": {"subject": "Happy Birthday", "body": "Dear Andrej, happy birthday! Best regards, [Your Name]"}}] generate("Schedule a call with my manager tomorrow 7 am to discuss my promotion.") # [{"name": "schedule_call", "parameters": {"date": "2024-07-27", "time": "07:00:00", "topic": "promotion"}}]