---
base_model: sentence-transformers/stsb-xlm-r-multilingual
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:15642
- loss:CosineSimilarityLoss
widget:
- source_sentence: Certificat d'admission universitaire
sentences:
- شهادة القبول الجامعي
- شهادة الحياة الفردية
- Film Production Center Creation Permit
- source_sentence: دبلوم الدراسات الجامعية التقنية
sentences:
- Wind Energy Equipment Registration Certificate
- Industrial Safety Standards Compliance Certificate
- Virtual Reality Technologies Import License
- source_sentence: شهادة المطابقة للمعايير المغربية
sentences:
- Certificate of Good Conduct
- Commercial Lease Contract
- Marriage Contract Document
- source_sentence: رخصة استغلال مركز دراسات الطاقة المتجددة
sentences:
- Permis d'importation de matériel médical
- Permis d'exploitation d'un centre d'études des énergies renouvelables
- Autorisation d'exercer une activité dans le domaine des énergies renouvelables
- source_sentence: Certificat de qualification en conception de systèmes intelligents
sentences:
- شهادة فحص منشآت الطاقة
- Permis de création d'une centrale électrique éolienne
- رخصة صناعية
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: eval
type: eval
metrics:
- type: pearson_cosine
value: 0.9932857106529867
name: Pearson Cosine
- type: spearman_cosine
value: 0.8659282642227534
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9872002912590794
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8659382004848898
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9873391899791255
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8659392197992224
name: Spearman Euclidean
- type: pearson_dot
value: 0.9762599450100259
name: Pearson Dot
- type: spearman_dot
value: 0.8656650063924476
name: Spearman Dot
- type: pearson_max
value: 0.9932857106529867
name: Pearson Max
- type: spearman_max
value: 0.8659392197992224
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/stsb-xlm-r-multilingual
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/stsb-xlm-r-multilingual](https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("amahdaouy/xlmrsim-mar_2ep")
# Run inference
sentences = [
'Certificat de qualification en conception de systèmes intelligents',
'رخصة صناعية',
"Permis de création d'une centrale électrique éolienne",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `eval`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.9933 |
| spearman_cosine | 0.8659 |
| pearson_manhattan | 0.9872 |
| spearman_manhattan | 0.8659 |
| pearson_euclidean | 0.9873 |
| spearman_euclidean | 0.8659 |
| pearson_dot | 0.9763 |
| spearman_dot | 0.8657 |
| pearson_max | 0.9933 |
| **spearman_max** | **0.8659** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 15,642 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
License to Produce and Distribute TV Programs
| Licence de production et de distribution de programmes télévisés
| 1.0
|
| Certificat de qualification en conception de systèmes intelligents
| رخصة صناعية
| 0.0
|
| عقد الشراء المشترك
| Shared Purchase Act
| 1.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 2
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters