--- license: apache-2.0 datasets: - amaai-lab/MidiCaps tags: - music - text-to-music - symbolic-music ---
# Text2midi: Generating Symbolic Music from Captions [Demo](https://huggingface.co/spaces/amaai-lab/text2midi) | [Model](https://huggingface.co/amaai-lab/text2midi) | [Github](https://github.com/AMAAI-Lab/Text2midi) | [Examples](https://amaai-lab.github.io/Text2midi/) | [Paper](https://arxiv.org/abs/2412.16526) | [Dataset](https://huggingface.co/datasets/amaai-lab/MidiCaps) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/amaai-lab/text2midi)
**text2midi** is the first end-to-end model for generating MIDI files from textual descriptions. By leveraging pretrained large language models and a powerful autoregressive transformer decoder, **text2midi** allows users to create symbolic music that aligns with detailed textual prompts, including musical attributes like chords, tempo, and style. The details of the model are described in [this paper](https://arxiv.org/abs/2412.16526). 🔥 Live demo available on [HuggingFace Spaces](https://huggingface.co/spaces/amaai-lab/text2midi).
## Quickstart Guide Generate symbolic music from a text prompt: ```python import pickle import torch import torch.nn as nn from transformers import T5Tokenizer from model.transformer_model import Transformer from huggingface_hub import hf_hub_download repo_id = "amaai-lab/text2midi" # Download the model.bin file model_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin") # Download the vocab_remi.pkl file tokenizer_path = hf_hub_download(repo_id=repo_id, filename="vocab_remi.pkl") if torch.cuda.is_available(): device = 'cuda' elif torch.backends.mps.is_available(): device = 'mps' else: device = 'cpu' print(f"Using device: {device}") # Load the tokenizer dictionary with open(tokenizer_path, "rb") as f: r_tokenizer = pickle.load(f) # Get the vocab size vocab_size = len(r_tokenizer) print("Vocab size: ", vocab_size) model = Transformer(vocab_size, 768, 8, 2048, 18, 1024, False, 8, device=device) model.load_state_dict(torch.load(model_path, map_location=device)) model.eval() tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base") print('Model loaded.') # Enter the text prompt and tokenize it src = "A melodic electronic song with ambient elements, featuring piano, acoustic guitar, alto saxophone, string ensemble, and electric bass. Set in G minor with a 4/4 time signature, it moves at a lively Presto tempo. The composition evokes a blend of relaxation and darkness, with hints of happiness and a meditative quality." print('Generating for prompt: ' + src) inputs = tokenizer(src, return_tensors='pt', padding=True, truncation=True) input_ids = nn.utils.rnn.pad_sequence(inputs.input_ids, batch_first=True, padding_value=0) input_ids = input_ids.to(device) attention_mask =nn.utils.rnn.pad_sequence(inputs.attention_mask, batch_first=True, padding_value=0) attention_mask = attention_mask.to(device) # Generate the midi output = model.generate(input_ids, attention_mask, max_len=2000,temperature = 1.0) output_list = output[0].tolist() generated_midi = r_tokenizer.decode(output_list) generated_midi.dump_midi("output.mid") ``` ## Installation If you have CUDA supported machine: ```bash git clone https://github.com/AMAAI-Lab/text2midi cd text2midi pip install -r requirements.txt ``` Alternatively, if you have MPS supported machine: ```bash git clone https://github.com/AMAAI-Lab/text2midi cd text2midi pip install -r requirements-mac.txt ``` ## Datasets The model was trained using two datasets: [SymphonyNet](https://symphonynet.github.io/) for semi-supervised pretraining and MidiCaps for finetuning towards MIDI generation from captions. The [MidiCaps dataset](https://huggingface.co/datasets/amaai-lab/MidiCaps) is a large-scale dataset of 168k MIDI files paired with rich text captions. These captions contain musical attributes such as key, tempo, style, and mood, making it ideal for text-to-MIDI generation tasks as described in [this paper](https://arxiv.org/abs/2406.02255). ## Inference We spport inference on CUDA, MPS and cpu. Please make sure you have pip installed the correct requirement file (requirments.txt for CUDA, requirements-mac.txt for MPS) ```bash python model/transformer_model.py --caption ``` ## Citation If you use text2midi in your research, please cite: ``` @inproceedings{bhandari2025text2midi, title={text2midi: Generating Symbolic Music from Captions}, author={Keshav Bhandari and Abhinaba Roy and Kyra Wang and Geeta Puri and Simon Colton and Dorien Herremans}, booktitle={Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI 2025)}, year={2025} } ``` ## Results of the Listening Study Each question is rated on a Likert scale from 1 (very bad) to 7 (very good). The table shows the average ratings per question for each group of participants. | Question | MidiCaps | text2midi | MuseCoco | |---------------------|----------|-----------|----------| | Musical Quality | 5.79 | 4.62 | 4.40 | | Overall Matching | 5.42 | 4.67 | 4.07 | | Genre Matching | 5.54 | 4.98 | 4.40 | | Mood Matching | 5.70 | 5.00 | 4.32 | | Key Matching | 4.61 | 3.64 | 3.36 | | Chord Matching | 3.20 | 2.50 | 2.00 | | Tempo Matching | 5.89 | 5.42 | 4.94 | ## Objective Evaluations | Metric | text2midi | MidiCaps | MuseCoco | |---------------------|-----------|----------|----------| | CR ↑ | 2.31 | 3.43 | 2.12 | | CLAP ↑ | 0.22 | 0.26 | 0.21 | | TB (%) ↑ | 39.70 | - | 21.71 | | TBT (%) ↑ | 65.80 | - | 54.63 | | CK (%) ↑ | 33.60 | - | 13.70 | | CKD (%) ↑ | 35.60 | - | 14.59 | **Note**: CR = Compression ratio CLAP = CLAP score TB = Tempo Bin TBT = Tempo Bin with Tolerance CK = Correct Key CKD = Correct Key with Duplicates ↑ = Higher score is better. ## Training To train text2midi, we recommend using accelerate for multi-GPU support. First, configure accelerate by running: ```bash accelerate config ``` Then, use the following command to start training: ```bash accelerate launch train.py \ --encoder_model="google/flan-t5-large" \ --decoder_model="configs/transformer_decoder_config.json" \ --dataset_name="amaai-lab/MidiCaps" \ --pretrain_dataset="amaai-lab/SymphonyNet" \ --batch_size=16 \ --learning_rate=1e-4 \ --epochs=40 \ ```