from typing import Dict, List, Any from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler import torch import base64 from PIL import Image import io class EndpointHandler(): def __init__(self, path=""): scheduler = EulerAncestralDiscreteScheduler.from_pretrained(path, subfolder="scheduler") self.pipeline = DiffusionPipeline.from_pretrained(path, scheduler=scheduler, torch_dtype=torch.float32) if torch.cuda.is_available(): self.pipeline.to("cuda") def __call__(self, data: Dict[str, any]) -> List[Dict[str, Any]]: mask_bytes = base64.b64decode(data["inputs"]["mask"]) mask = Image.open(io.BytesIO(mask_bytes)).convert('RGB') image_bytes = base64.b64decode(data["inputs"]["image"]) image = Image.open(io.BytesIO(image_bytes)).convert('RGB') prompt = "a picture of a person with a nice haircut" new_image = self.pipeline(prompt=prompt, image=image, mask_image=mask, height=512, width=512, num_inference_steps=20).images[0] return [{"image": new_image}]