---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25012
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: ÇİFT KLİMALI BARAN FREE COOLING UNIT MONTAJ KITI.
sentences:
- Building construction machinery and accessories
- Building construction machinery and accessories
- Mounting Hardware
- source_sentence: HUAWEI.TN1-L4G-100GHz-FEC /Line Wavelength Conversion Board with
4xGigabit Ethernet Line Capacity
sentences:
- Fixed network equipment and components
- Audio and visual equipment
- System boards processors interfaces or modules
- source_sentence: ASR 9922 System Fan Tray v3, Spare
sentences:
- Security and control equipment
- Computers
- System boards processors interfaces or modules
- source_sentence: Enhanced Cat.5E UTP Patch Cord 1.5M, White
sentences:
- Electrical cable and accessories
- Computer accessories
- Air circulation and parts and accessories
- source_sentence: Controller CXC
sentences:
- Personal communication devices
- Fixed network equipment and components
- Power generation control equipment
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on nomic-ai/modernbert-embed-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: .nan
name: Pearson Cosine
- type: spearman_cosine
value: .nan
name: Spearman Cosine
---
# SentenceTransformer based on nomic-ai/modernbert-embed-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base)
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("alpcansoydas/product-model-02.12.25-total46clas-ifhavemorethan100sampleperclass-0.71acc")
# Run inference
sentences = [
'Controller CXC',
'Power generation control equipment',
'Personal communication devices',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:--------|
| pearson_cosine | nan |
| **spearman_cosine** | **nan** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 25,012 training samples
* Columns: sentence1
and sentence2
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
HPE MSA 14.4T SAS 10K SFF M2 6pk HDD Bdl
| Media storage devices
|
| Huawei Solar Greensites Solution (Yerli Panel_4*540Wp_Huawei Panel + PVPU+Konstrüksiyon+İşçilik)
| Power generation control equipment
|
| NetEngine9000 10G EVPN Port License(per 10G)
| Network management software
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 3,127 evaluation samples
* Columns: sentence1
and sentence2
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string |
| details | CONNECTION CABLE
| Electrical cable and accessories
|
| MMU2 B 4-16 (24V, -48V)
| Electronic component parts and raw materials and accessories
|
| 3ft C14 to C13 locking power cable 15A/250V - red
| Electrical cable and accessories
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters