--- base_model: mastikaui/NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2-tuning results: [] language: - en --- # NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2-tuning This model is a fine-tuned version of [mastikaui/NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2](https://huggingface.co/mastikaui/NLP-Sentiment-Analysis-Airline-Tweets-with-BERT-V2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3128 - Accuracy: 0.8776 - F1 Score: 0.8775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.3035 | 1.0 | 1224 | 0.3224 | 0.8636 | 0.8637 | | 0.2797 | 2.0 | 2448 | 0.3174 | 0.8685 | 0.8685 | | 0.2881 | 3.0 | 3672 | 0.3139 | 0.8709 | 0.8709 | | 0.2719 | 4.0 | 4896 | 0.3167 | 0.8734 | 0.8734 | | 0.2573 | 5.0 | 6120 | 0.3155 | 0.8758 | 0.8758 | | 0.2524 | 6.0 | 7344 | 0.3153 | 0.8743 | 0.8743 | | 0.2531 | 7.0 | 8568 | 0.3158 | 0.8752 | 0.8753 | | 0.2516 | 8.0 | 9792 | 0.3199 | 0.8746 | 0.8747 | ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1