# CogVideoX-Fun-V1.1-Reward-LoRAs ## Introduction We explore the Reward Backpropagation technique [1](#ref1) [2](#ref2) to optimized the generated videos by [CogVideoX-Fun-V1.1](https://github.com/aigc-apps/CogVideoX-Fun) for better alignment with human preferences. We provide the following pre-trained models (i.e. LoRAs) along with [the training script](https://github.com/aigc-apps/CogVideoX-Fun/blob/main/scripts/train_reward_lora.py). You can use these LoRAs to enhance the corresponding base model as a plug-in or train your own reward LoRA. For more details, please refer to our [GitHub repo](https://github.com/aigc-apps/CogVideoX-Fun). | Name | Base Model | Reward Model | Hugging Face | Description | |--|--|--|--|--| | CogVideoX-Fun-V1.1-5b-InP-HPS2.1.safetensors | [CogVideoX-Fun-V1.1-5b](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP) | [HPS v2.1](https://github.com/tgxs002/HPSv2) | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-Reward-LoRAs/resolve/main/CogVideoX-Fun-V1.1-5b-InP-HPS2.1.safetensors) | Official HPS v2.1 reward LoRA (`rank=128` and `network_alpha=64`) for CogVideoX-Fun-V1.1-5b-InP. It is trained with a batch size of 8 for 1,500 steps.| | CogVideoX-Fun-V1.1-2b-InP-HPS2.1.safetensors | [CogVideoX-Fun-V1.1-2b](alibaba-pai/CogVideoX-Fun-V1.1-2b-InP) | [HPS v2.1](https://github.com/tgxs002/HPSv2) | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-Reward-LoRAs/resolve/main/CogVideoX-Fun-V1.1-2b-InP-HPS2.1.safetensors) | Official HPS v2.1 reward LoRA (`rank=128` and `network_alpha=64`) for CogVideoX-Fun-V1.1-2b-InP. It is trained with a batch size of 8 for 3,000 steps.| | CogVideoX-Fun-V1.1-5b-InP-MPS.safetensors | [CogVideoX-Fun-V1.1-5b](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-5b-InP) | [MPS](https://github.com/Kwai-Kolors/MPS) | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-Reward-LoRAs/resolve/main/CogVideoX-Fun-V1.1-5b-InP-MPS.safetensors) | Official MPS reward LoRA (`rank=128` and `network_alpha=64`) for CogVideoX-Fun-V1.1-5b-InP. It is trained with a batch size of 8 for 5,500 steps.| | CogVideoX-Fun-V1.1-2b-InP-MPS.safetensors | [CogVideoX-Fun-V1.1-2b](alibaba-pai/CogVideoX-Fun-V1.1-2b-InP) | [MPS](https://github.com/Kwai-Kolors/MPS) | [🤗Link](https://huggingface.co/alibaba-pai/CogVideoX-Fun-V1.1-Reward-LoRAs/resolve/main/CogVideoX-Fun-V1.1-2b-InP-MPS.safetensors) | Official MPS reward LoRA (`rank=128` and `network_alpha=64`) for CogVideoX-Fun-V1.1-2b-InP. It is trained with a batch size of 8 for 16,000 steps.| ## Demo ### CogVideoX-Fun-V1.1-5B
Prompt | CogVideoX-Fun-V1.1-5B | CogVideoX-Fun-V1.1-5B HPSv2.1 Reward LoRA |
CogVideoX-Fun-V1.1-5B MPS Reward LoRA |
---|---|---|---|
Pig with wings flying above a diamond mountain | |||
A dog runs through a field while a cat climbs a tree | |||
Crystal cake shimmering beside a metal apple | |||
Elderly artist with a white beard painting on a white canvas |
Prompt | CogVideoX-Fun-V1.1-2B | CogVideoX-Fun-V1.1-2B HPSv2.1 Reward LoRA |
CogVideoX-Fun-V1.1-2B MPS Reward LoRA |
---|---|---|---|
A blue car drives past a white picket fence on a sunny day | |||
Blue jay swooping near a red maple tree | |||
Yellow curtains swaying near a blue sofa | |||
White tractor plowing near a green farmhouse |