---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Is it available?
- text: Est-il possible de fixer une visite?
- text: Where is it located?
- text: Pouvez-vous me parler des projets disponibles?
- text: What’s the process to reserve?
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1.0
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 128 tokens
- **Number of Classes:** 9 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| schedule_a_visit |
- 'I’d like to schedule a visit'
- 'Je voudrais planifier une visite'
- 'Puis-je programmer une visite?'
|
| check_availability | - 'Est-ce encore disponible?'
- 'Is this still available?'
- 'Can I check availability?'
|
| amenities_and_features | - 'Parlez-moi des fonctionnalités du bien'
- 'Tell me the features of the property'
- 'Quels sont les équipements disponibles?'
|
| payment_plan | - 'Pouvez-vous me parler du plan de paiement?'
- 'Quels sont les modes de paiement disponibles?'
- 'What are the payment options?'
|
| reservation_process | - 'Tell me about the reservation process'
- 'Pouvez-vous m’expliquer le processus de réservation?'
- 'Comment puis-je faire une réservation?'
|
| location_details | - 'Où est-ce situé?'
- 'Can you tell me the location details?'
- 'What’s the address?'
|
| pricing_details | - 'How much does it cost?'
- 'Tell me the pricing details'
- 'Combien ça coûte?'
|
| option_process | - 'Tell me about the option process'
- 'Parlez-moi du processus des options'
- 'Quels sont mes choix?'
|
| information_on_projects | - 'Can you give me information about the projects?'
- 'I need details on the available projects'
- 'Quels sont les projets disponibles ?'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("ali170506/chab")
# Run inference
preds = model("Is it available?")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 5.2222 | 8 |
| Label | Training Sample Count |
|:------------------------|:----------------------|
| information_on_projects | 3 |
| pricing_details | 3 |
| location_details | 3 |
| amenities_and_features | 3 |
| check_availability | 3 |
| schedule_a_visit | 3 |
| reservation_process | 3 |
| option_process | 3 |
| payment_plan | 3 |
### Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:-------:|:-------------:|:---------------:|
| 0.0062 | 1 | 0.0311 | - |
| 0.0617 | 10 | 0.0989 | - |
| 0.1235 | 20 | 0.0036 | - |
| 0.1852 | 30 | 0.0121 | - |
| 0.2469 | 40 | 0.0209 | - |
| 0.3086 | 50 | 0.001 | - |
| 0.3704 | 60 | 0.0067 | - |
| 0.4321 | 70 | 0.017 | - |
| 0.4938 | 80 | 0.0037 | - |
| 0.5556 | 90 | 0.012 | - |
| 0.6173 | 100 | 0.0009 | - |
| 0.6790 | 110 | 0.0044 | - |
| 0.7407 | 120 | 0.0014 | - |
| 0.8025 | 130 | 0.0006 | - |
| 0.8642 | 140 | 0.0016 | - |
| 0.9259 | 150 | 0.0024 | - |
| 0.9877 | 160 | 0.0011 | - |
| 1.0 | 162 | - | 0.0164 |
| 1.0494 | 170 | 0.0019 | - |
| 1.1111 | 180 | 0.0017 | - |
| 1.1728 | 190 | 0.0004 | - |
| 1.2346 | 200 | 0.0008 | - |
| 1.2963 | 210 | 0.0012 | - |
| 1.3580 | 220 | 0.0009 | - |
| 1.4198 | 230 | 0.0006 | - |
| 1.4815 | 240 | 0.001 | - |
| 1.5432 | 250 | 0.0009 | - |
| 1.6049 | 260 | 0.0015 | - |
| 1.6667 | 270 | 0.0016 | - |
| 1.7284 | 280 | 0.0009 | - |
| 1.7901 | 290 | 0.0005 | - |
| 1.8519 | 300 | 0.0009 | - |
| 1.9136 | 310 | 0.0009 | - |
| 1.9753 | 320 | 0.0008 | - |
| 2.0 | 324 | - | 0.0138 |
| 2.0370 | 330 | 0.0011 | - |
| 2.0988 | 340 | 0.0016 | - |
| 2.1605 | 350 | 0.0006 | - |
| 2.2222 | 360 | 0.0012 | - |
| 2.2840 | 370 | 0.0014 | - |
| 2.3457 | 380 | 0.0009 | - |
| 2.4074 | 390 | 0.0008 | - |
| 2.4691 | 400 | 0.0003 | - |
| 2.5309 | 410 | 0.0002 | - |
| 2.5926 | 420 | 0.0007 | - |
| 2.6543 | 430 | 0.001 | - |
| 2.7160 | 440 | 0.0008 | - |
| 2.7778 | 450 | 0.0008 | - |
| 2.8395 | 460 | 0.0003 | - |
| 2.9012 | 470 | 0.0004 | - |
| 2.9630 | 480 | 0.0003 | - |
| **3.0** | **486** | **-** | **0.0129** |
| 3.0247 | 490 | 0.0013 | - |
| 3.0864 | 500 | 0.0006 | - |
| 3.1481 | 510 | 0.0008 | - |
| 3.2099 | 520 | 0.0001 | - |
| 3.2716 | 530 | 0.0007 | - |
| 3.3333 | 540 | 0.0004 | - |
| 3.3951 | 550 | 0.0004 | - |
| 3.4568 | 560 | 0.0003 | - |
| 3.5185 | 570 | 0.0003 | - |
| 3.5802 | 580 | 0.0002 | - |
| 3.6420 | 590 | 0.0002 | - |
| 3.7037 | 600 | 0.0002 | - |
| 3.7654 | 610 | 0.0007 | - |
| 3.8272 | 620 | 0.0007 | - |
| 3.8889 | 630 | 0.0007 | - |
| 3.9506 | 640 | 0.0003 | - |
| 4.0 | 648 | - | 0.0129 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.37.0
- PyTorch: 2.4.1+cu121
- Datasets: 3.0.1
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```