--- base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Is it available? - text: Est-il possible de fixer une visite? - text: Where is it located? - text: Pouvez-vous me parler des projets disponibles? - text: What’s the process to reserve? inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 9 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | schedule_a_visit | | | check_availability | | | amenities_and_features | | | payment_plan | | | reservation_process | | | location_details | | | pricing_details | | | option_process | | | information_on_projects | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("ali170506/chab") # Run inference preds = model("Is it available?") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 3 | 5.2222 | 8 | | Label | Training Sample Count | |:------------------------|:----------------------| | information_on_projects | 3 | | pricing_details | 3 | | location_details | 3 | | amenities_and_features | 3 | | check_availability | 3 | | schedule_a_visit | 3 | | reservation_process | 3 | | option_process | 3 | | payment_plan | 3 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0062 | 1 | 0.0311 | - | | 0.0617 | 10 | 0.0989 | - | | 0.1235 | 20 | 0.0036 | - | | 0.1852 | 30 | 0.0121 | - | | 0.2469 | 40 | 0.0209 | - | | 0.3086 | 50 | 0.001 | - | | 0.3704 | 60 | 0.0067 | - | | 0.4321 | 70 | 0.017 | - | | 0.4938 | 80 | 0.0037 | - | | 0.5556 | 90 | 0.012 | - | | 0.6173 | 100 | 0.0009 | - | | 0.6790 | 110 | 0.0044 | - | | 0.7407 | 120 | 0.0014 | - | | 0.8025 | 130 | 0.0006 | - | | 0.8642 | 140 | 0.0016 | - | | 0.9259 | 150 | 0.0024 | - | | 0.9877 | 160 | 0.0011 | - | | 1.0 | 162 | - | 0.0164 | | 1.0494 | 170 | 0.0019 | - | | 1.1111 | 180 | 0.0017 | - | | 1.1728 | 190 | 0.0004 | - | | 1.2346 | 200 | 0.0008 | - | | 1.2963 | 210 | 0.0012 | - | | 1.3580 | 220 | 0.0009 | - | | 1.4198 | 230 | 0.0006 | - | | 1.4815 | 240 | 0.001 | - | | 1.5432 | 250 | 0.0009 | - | | 1.6049 | 260 | 0.0015 | - | | 1.6667 | 270 | 0.0016 | - | | 1.7284 | 280 | 0.0009 | - | | 1.7901 | 290 | 0.0005 | - | | 1.8519 | 300 | 0.0009 | - | | 1.9136 | 310 | 0.0009 | - | | 1.9753 | 320 | 0.0008 | - | | 2.0 | 324 | - | 0.0138 | | 2.0370 | 330 | 0.0011 | - | | 2.0988 | 340 | 0.0016 | - | | 2.1605 | 350 | 0.0006 | - | | 2.2222 | 360 | 0.0012 | - | | 2.2840 | 370 | 0.0014 | - | | 2.3457 | 380 | 0.0009 | - | | 2.4074 | 390 | 0.0008 | - | | 2.4691 | 400 | 0.0003 | - | | 2.5309 | 410 | 0.0002 | - | | 2.5926 | 420 | 0.0007 | - | | 2.6543 | 430 | 0.001 | - | | 2.7160 | 440 | 0.0008 | - | | 2.7778 | 450 | 0.0008 | - | | 2.8395 | 460 | 0.0003 | - | | 2.9012 | 470 | 0.0004 | - | | 2.9630 | 480 | 0.0003 | - | | **3.0** | **486** | **-** | **0.0129** | | 3.0247 | 490 | 0.0013 | - | | 3.0864 | 500 | 0.0006 | - | | 3.1481 | 510 | 0.0008 | - | | 3.2099 | 520 | 0.0001 | - | | 3.2716 | 530 | 0.0007 | - | | 3.3333 | 540 | 0.0004 | - | | 3.3951 | 550 | 0.0004 | - | | 3.4568 | 560 | 0.0003 | - | | 3.5185 | 570 | 0.0003 | - | | 3.5802 | 580 | 0.0002 | - | | 3.6420 | 590 | 0.0002 | - | | 3.7037 | 600 | 0.0002 | - | | 3.7654 | 610 | 0.0007 | - | | 3.8272 | 620 | 0.0007 | - | | 3.8889 | 630 | 0.0007 | - | | 3.9506 | 640 | 0.0003 | - | | 4.0 | 648 | - | 0.0129 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.37.0 - PyTorch: 2.4.1+cu121 - Datasets: 3.0.1 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```