--- license: apache-2.0 tags: - text-classification - generated_from_trainer datasets: - glue metrics: - accuracy - f1 base_model: distilroberta-base model-index: - name: course-distilroberta-base-mrpc-glue results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - type: accuracy value: 0.8235294117647058 name: Accuracy - type: f1 value: 0.8779661016949152 name: F1 --- # course-distilroberta-base-mrpc-glue This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 1.0204 - Accuracy: 0.8235 - F1: 0.8780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1616 | 1.09 | 500 | 1.1943 | 0.8162 | 0.8718 | | 0.2134 | 2.18 | 1000 | 1.0204 | 0.8235 | 0.8780 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2