--- base_model: microsoft/mdeberta-v3-base library_name: peft license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: mdeberta-v3-base-finetuned-ner results: [] --- # mdeberta-v3-base-finetuned-ner This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1094 - Precision: 0.9101 - Recall: 0.9567 - F1: 0.9328 - Accuracy: 0.9757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2289 | 1.0 | 1167 | 0.1496 | 0.8186 | 0.8964 | 0.8557 | 0.9524 | | 0.1466 | 2.0 | 2334 | 0.1193 | 0.8771 | 0.9312 | 0.9033 | 0.9677 | | 0.1064 | 3.0 | 3501 | 0.1143 | 0.8768 | 0.9451 | 0.9097 | 0.9673 | | 0.0808 | 4.0 | 4668 | 0.0978 | 0.8968 | 0.9491 | 0.9222 | 0.9724 | | 0.0668 | 5.0 | 5835 | 0.1111 | 0.8889 | 0.9533 | 0.9200 | 0.9713 | | 0.0559 | 6.0 | 7002 | 0.1168 | 0.9054 | 0.9561 | 0.9301 | 0.9746 | | 0.0459 | 7.0 | 8169 | 0.1085 | 0.9174 | 0.9457 | 0.9313 | 0.9749 | | 0.0421 | 8.0 | 9336 | 0.1077 | 0.9141 | 0.9516 | 0.9325 | 0.9759 | | 0.0324 | 9.0 | 10503 | 0.1084 | 0.9148 | 0.9575 | 0.9357 | 0.9766 | | 0.03 | 10.0 | 11670 | 0.1094 | 0.9101 | 0.9567 | 0.9328 | 0.9757 | ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1