--- tags: - merge license: other model-index: - name: BoreanGale-70B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.37 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 75.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 68.6 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 67.32 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=alchemonaut/BoreanGale-70B name: Open LLM Leaderboard --- # BoreanGale-70B A merge using a custom algorithm of: - [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) - [Sao10K/WinterGoddess-1.4x-70B-L2](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2) This merge retains most of the weights of Miqu, but when a weight is similar between the two, it is interpolated to the WinterGoddess value. A parameter *t* specifies the sameness threshold. When the distance between two values is below *t*, the weight from WinterGoddess is used. This version of the model uses *t* = 0.001. *t* was selected so that very few but some weights are fully switched to WinterGoddess. Model quality rapidly degrades above *t* = 0.0025: - *t* = 0.001: This model - *t* = 0.0025: Generates one paragraph okay, but then reverts to garbage - *t* = 0.005: Garbage; semi-related word lists - *t* = 0.01: Garbage; pseudorandom tokens output ``` t: Union[float, np.ndarray], v0: Union[np.ndarray, torch.Tensor], v1: Union[np.ndarray, torch.Tensor], ... lweight = numpy.absolute(v0-v1) lweight = t / lweight lweight = numpy.nan_to_num(lweight, nan=1.0, posinf=1.0, neginf=1.0) numpy.clip(lweight, a_min=0.0, a_max=1.0, out=lweight) res = lerp(lweight,v0,v1) ```

# License and Use Since the ultimate origin of Miqu is at this time unknown beyond speculation, this model is for noncommercial research use only.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_details_alchemonaut__BoreanGale-70B) | Metric |Value| |---------------------------------|----:| |Avg. |76.48| |AI2 Reasoning Challenge (25-Shot)|73.89| |HellaSwag (10-Shot) |89.37| |MMLU (5-Shot) |75.19| |TruthfulQA (0-shot) |68.6| |Winogrande (5-shot) |84.53| |GSM8k (5-shot) |67.32|