# Ultralytics YOLO 🚀, AGPL-3.0 license """Monkey patches to update/extend functionality of existing functions.""" import time from pathlib import Path import cv2 import numpy as np import torch # OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------ _imshow = cv2.imshow # copy to avoid recursion errors def imread(filename: str, flags: int = cv2.IMREAD_COLOR): """ Read an image from a file. Args: filename (str): Path to the file to read. flags (int, optional): Flag that can take values of cv2.IMREAD_*. Defaults to cv2.IMREAD_COLOR. Returns: (np.ndarray): The read image. """ return cv2.imdecode(np.fromfile(filename, np.uint8), flags) def imwrite(filename: str, img: np.ndarray, params=None): """ Write an image to a file. Args: filename (str): Path to the file to write. img (np.ndarray): Image to write. params (list of ints, optional): Additional parameters. See OpenCV documentation. Returns: (bool): True if the file was written, False otherwise. """ try: cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename) return True except Exception: return False def imshow(winname: str, mat: np.ndarray): """ Displays an image in the specified window. Args: winname (str): Name of the window. mat (np.ndarray): Image to be shown. """ _imshow(winname.encode("unicode_escape").decode(), mat) # PyTorch functions ---------------------------------------------------------------------------------------------------- _torch_load = torch.load # copy to avoid recursion errors _torch_save = torch.save def torch_load(*args, **kwargs): """ Load a PyTorch model with updated arguments to avoid warnings. This function wraps torch.load and adds the 'weights_only' argument for PyTorch 1.13.0+ to prevent warnings. Args: *args (Any): Variable length argument list to pass to torch.load. **kwargs (Any): Arbitrary keyword arguments to pass to torch.load. Returns: (Any): The loaded PyTorch object. Note: For PyTorch versions 2.0 and above, this function automatically sets 'weights_only=False' if the argument is not provided, to avoid deprecation warnings. """ from ultralytics.utils.torch_utils import TORCH_1_13 if TORCH_1_13 and "weights_only" not in kwargs: kwargs["weights_only"] = False return _torch_load(*args, **kwargs) def torch_save(*args, **kwargs): """ Optionally use dill to serialize lambda functions where pickle does not, adding robustness with 3 retries and exponential standoff in case of save failure. Args: *args (tuple): Positional arguments to pass to torch.save. **kwargs (Any): Keyword arguments to pass to torch.save. """ for i in range(4): # 3 retries try: return _torch_save(*args, **kwargs) except RuntimeError as e: # unable to save, possibly waiting for device to flush or antivirus scan if i == 3: raise e time.sleep((2**i) / 2) # exponential standoff: 0.5s, 1.0s, 2.0s