# Ultralytics YOLO 🚀, AGPL-3.0 license import torch import torch.nn as nn import torch.nn.functional as F from ultralytics.utils.metrics import OKS_SIGMA from ultralytics.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh from ultralytics.utils.tal import RotatedTaskAlignedAssigner, TaskAlignedAssigner, dist2bbox, dist2rbox, make_anchors from ultralytics.utils.torch_utils import autocast from .metrics import bbox_iou, probiou from .tal import bbox2dist class VarifocalLoss(nn.Module): """ Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367. """ def __init__(self): """Initialize the VarifocalLoss class.""" super().__init__() @staticmethod def forward(pred_score, gt_score, label, alpha=0.75, gamma=2.0): """Computes varfocal loss.""" weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label with autocast(enabled=False): loss = ( (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction="none") * weight) .mean(1) .sum() ) return loss class FocalLoss(nn.Module): """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5).""" def __init__(self): """Initializer for FocalLoss class with no parameters.""" super().__init__() @staticmethod def forward(pred, label, gamma=1.5, alpha=0.25): """Calculates and updates confusion matrix for object detection/classification tasks.""" loss = F.binary_cross_entropy_with_logits(pred, label, reduction="none") # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = pred.sigmoid() # prob from logits p_t = label * pred_prob + (1 - label) * (1 - pred_prob) modulating_factor = (1.0 - p_t) ** gamma loss *= modulating_factor if alpha > 0: alpha_factor = label * alpha + (1 - label) * (1 - alpha) loss *= alpha_factor return loss.mean(1).sum() class DFLoss(nn.Module): """Criterion class for computing DFL losses during training.""" def __init__(self, reg_max=16) -> None: """Initialize the DFL module.""" super().__init__() self.reg_max = reg_max def __call__(self, pred_dist, target): """ Return sum of left and right DFL losses. Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 """ target = target.clamp_(0, self.reg_max - 1 - 0.01) tl = target.long() # target left tr = tl + 1 # target right wl = tr - target # weight left wr = 1 - wl # weight right return ( F.cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape) * wl + F.cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape) * wr ).mean(-1, keepdim=True) class BboxLoss(nn.Module): """Criterion class for computing training losses during training.""" def __init__(self, reg_max=16): """Initialize the BboxLoss module with regularization maximum and DFL settings.""" super().__init__() self.dfl_loss = DFLoss(reg_max) if reg_max > 1 else None def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): """IoU loss.""" weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True) loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum # DFL loss if self.dfl_loss: target_ltrb = bbox2dist(anchor_points, target_bboxes, self.dfl_loss.reg_max - 1) loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight loss_dfl = loss_dfl.sum() / target_scores_sum else: loss_dfl = torch.tensor(0.0).to(pred_dist.device) return loss_iou, loss_dfl class RotatedBboxLoss(BboxLoss): """Criterion class for computing training losses during training.""" def __init__(self, reg_max): """Initialize the BboxLoss module with regularization maximum and DFL settings.""" super().__init__(reg_max) def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): """IoU loss.""" weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) iou = probiou(pred_bboxes[fg_mask], target_bboxes[fg_mask]) loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum # DFL loss if self.dfl_loss: target_ltrb = bbox2dist(anchor_points, xywh2xyxy(target_bboxes[..., :4]), self.dfl_loss.reg_max - 1) loss_dfl = self.dfl_loss(pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max), target_ltrb[fg_mask]) * weight loss_dfl = loss_dfl.sum() / target_scores_sum else: loss_dfl = torch.tensor(0.0).to(pred_dist.device) return loss_iou, loss_dfl class KeypointLoss(nn.Module): """Criterion class for computing training losses.""" def __init__(self, sigmas) -> None: """Initialize the KeypointLoss class.""" super().__init__() self.sigmas = sigmas def forward(self, pred_kpts, gt_kpts, kpt_mask, area): """Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints.""" d = (pred_kpts[..., 0] - gt_kpts[..., 0]).pow(2) + (pred_kpts[..., 1] - gt_kpts[..., 1]).pow(2) kpt_loss_factor = kpt_mask.shape[1] / (torch.sum(kpt_mask != 0, dim=1) + 1e-9) # e = d / (2 * (area * self.sigmas) ** 2 + 1e-9) # from formula e = d / ((2 * self.sigmas).pow(2) * (area + 1e-9) * 2) # from cocoeval return (kpt_loss_factor.view(-1, 1) * ((1 - torch.exp(-e)) * kpt_mask)).mean() class v8DetectionLoss: """Criterion class for computing training losses.""" def __init__(self, model, tal_topk=10): # model must be de-paralleled """Initializes v8DetectionLoss with the model, defining model-related properties and BCE loss function.""" device = next(model.parameters()).device # get model device h = model.args # hyperparameters m = model.model[-1] # Detect() module self.bce = nn.BCEWithLogitsLoss(reduction="none") self.hyp = h self.stride = m.stride # model strides self.nc = m.nc # number of classes self.no = m.nc + m.reg_max * 4 self.reg_max = m.reg_max self.device = device self.use_dfl = m.reg_max > 1 self.assigner = TaskAlignedAssigner(topk=tal_topk, num_classes=self.nc, alpha=0.5, beta=6.0) self.bbox_loss = BboxLoss(m.reg_max).to(device) self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device) def preprocess(self, targets, batch_size, scale_tensor): """Preprocesses the target counts and matches with the input batch size to output a tensor.""" nl, ne = targets.shape if nl == 0: out = torch.zeros(batch_size, 0, ne - 1, device=self.device) else: i = targets[:, 0] # image index _, counts = i.unique(return_counts=True) counts = counts.to(dtype=torch.int32) out = torch.zeros(batch_size, counts.max(), ne - 1, device=self.device) for j in range(batch_size): matches = i == j n = matches.sum() if n: out[j, :n] = targets[matches, 1:] out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor)) return out def bbox_decode(self, anchor_points, pred_dist): """Decode predicted object bounding box coordinates from anchor points and distribution.""" if self.use_dfl: b, a, c = pred_dist.shape # batch, anchors, channels pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype)) # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype)) # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2) return dist2bbox(pred_dist, anchor_points, xywh=False) def __call__(self, preds, batch): """Calculate the sum of the loss for box, cls and dfl multiplied by batch size.""" loss = torch.zeros(3, device=self.device) # box, cls, dfl feats = preds[1] if isinstance(preds, tuple) else preds pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( (self.reg_max * 4, self.nc), 1 ) pred_scores = pred_scores.permute(0, 2, 1).contiguous() pred_distri = pred_distri.permute(0, 2, 1).contiguous() dtype = pred_scores.dtype batch_size = pred_scores.shape[0] imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) # Targets targets = torch.cat((batch["batch_idx"].view(-1, 1), batch["cls"].view(-1, 1), batch["bboxes"]), 1) targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0) # Pboxes pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) # dfl_conf = pred_distri.view(batch_size, -1, 4, self.reg_max).detach().softmax(-1) # dfl_conf = (dfl_conf.amax(-1).mean(-1) + dfl_conf.amax(-1).amin(-1)) / 2 _, target_bboxes, target_scores, fg_mask, _ = self.assigner( # pred_scores.detach().sigmoid() * 0.8 + dfl_conf.unsqueeze(-1) * 0.2, pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, ) target_scores_sum = max(target_scores.sum(), 1) # Cls loss # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE # Bbox loss if fg_mask.sum(): target_bboxes /= stride_tensor loss[0], loss[2] = self.bbox_loss( pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask ) loss[0] *= self.hyp.box # box gain loss[1] *= self.hyp.cls # cls gain loss[2] *= self.hyp.dfl # dfl gain return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) class v8SegmentationLoss(v8DetectionLoss): """Criterion class for computing training losses.""" def __init__(self, model): # model must be de-paralleled """Initializes the v8SegmentationLoss class, taking a de-paralleled model as argument.""" super().__init__(model) self.overlap = model.args.overlap_mask def __call__(self, preds, batch): """Calculate and return the loss for the YOLO model.""" loss = torch.zeros(4, device=self.device) # box, cls, dfl feats, pred_masks, proto = preds if len(preds) == 3 else preds[1] batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( (self.reg_max * 4, self.nc), 1 ) # B, grids, .. pred_scores = pred_scores.permute(0, 2, 1).contiguous() pred_distri = pred_distri.permute(0, 2, 1).contiguous() pred_masks = pred_masks.permute(0, 2, 1).contiguous() dtype = pred_scores.dtype imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) # Targets try: batch_idx = batch["batch_idx"].view(-1, 1) targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1) targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0) except RuntimeError as e: raise TypeError( "ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n" "This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, " "i.e. 'yolo train model=yolov8n-seg.pt data=coco8.yaml'.\nVerify your dataset is a " "correctly formatted 'segment' dataset using 'data=coco8-seg.yaml' " "as an example.\nSee https://docs.ultralytics.com/datasets/segment/ for help." ) from e # Pboxes pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner( pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, ) target_scores_sum = max(target_scores.sum(), 1) # Cls loss # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE if fg_mask.sum(): # Bbox loss loss[0], loss[3] = self.bbox_loss( pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor, target_scores, target_scores_sum, fg_mask, ) # Masks loss masks = batch["masks"].to(self.device).float() if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0] loss[1] = self.calculate_segmentation_loss( fg_mask, masks, target_gt_idx, target_bboxes, batch_idx, proto, pred_masks, imgsz, self.overlap ) # WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove else: loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss loss[0] *= self.hyp.box # box gain loss[1] *= self.hyp.box # seg gain loss[2] *= self.hyp.cls # cls gain loss[3] *= self.hyp.dfl # dfl gain return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) @staticmethod def single_mask_loss( gt_mask: torch.Tensor, pred: torch.Tensor, proto: torch.Tensor, xyxy: torch.Tensor, area: torch.Tensor ) -> torch.Tensor: """ Compute the instance segmentation loss for a single image. Args: gt_mask (torch.Tensor): Ground truth mask of shape (n, H, W), where n is the number of objects. pred (torch.Tensor): Predicted mask coefficients of shape (n, 32). proto (torch.Tensor): Prototype masks of shape (32, H, W). xyxy (torch.Tensor): Ground truth bounding boxes in xyxy format, normalized to [0, 1], of shape (n, 4). area (torch.Tensor): Area of each ground truth bounding box of shape (n,). Returns: (torch.Tensor): The calculated mask loss for a single image. Notes: The function uses the equation pred_mask = torch.einsum('in,nhw->ihw', pred, proto) to produce the predicted masks from the prototype masks and predicted mask coefficients. """ pred_mask = torch.einsum("in,nhw->ihw", pred, proto) # (n, 32) @ (32, 80, 80) -> (n, 80, 80) loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none") return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).sum() def calculate_segmentation_loss( self, fg_mask: torch.Tensor, masks: torch.Tensor, target_gt_idx: torch.Tensor, target_bboxes: torch.Tensor, batch_idx: torch.Tensor, proto: torch.Tensor, pred_masks: torch.Tensor, imgsz: torch.Tensor, overlap: bool, ) -> torch.Tensor: """ Calculate the loss for instance segmentation. Args: fg_mask (torch.Tensor): A binary tensor of shape (BS, N_anchors) indicating which anchors are positive. masks (torch.Tensor): Ground truth masks of shape (BS, H, W) if `overlap` is False, otherwise (BS, ?, H, W). target_gt_idx (torch.Tensor): Indexes of ground truth objects for each anchor of shape (BS, N_anchors). target_bboxes (torch.Tensor): Ground truth bounding boxes for each anchor of shape (BS, N_anchors, 4). batch_idx (torch.Tensor): Batch indices of shape (N_labels_in_batch, 1). proto (torch.Tensor): Prototype masks of shape (BS, 32, H, W). pred_masks (torch.Tensor): Predicted masks for each anchor of shape (BS, N_anchors, 32). imgsz (torch.Tensor): Size of the input image as a tensor of shape (2), i.e., (H, W). overlap (bool): Whether the masks in `masks` tensor overlap. Returns: (torch.Tensor): The calculated loss for instance segmentation. Notes: The batch loss can be computed for improved speed at higher memory usage. For example, pred_mask can be computed as follows: pred_mask = torch.einsum('in,nhw->ihw', pred, proto) # (i, 32) @ (32, 160, 160) -> (i, 160, 160) """ _, _, mask_h, mask_w = proto.shape loss = 0 # Normalize to 0-1 target_bboxes_normalized = target_bboxes / imgsz[[1, 0, 1, 0]] # Areas of target bboxes marea = xyxy2xywh(target_bboxes_normalized)[..., 2:].prod(2) # Normalize to mask size mxyxy = target_bboxes_normalized * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=proto.device) for i, single_i in enumerate(zip(fg_mask, target_gt_idx, pred_masks, proto, mxyxy, marea, masks)): fg_mask_i, target_gt_idx_i, pred_masks_i, proto_i, mxyxy_i, marea_i, masks_i = single_i if fg_mask_i.any(): mask_idx = target_gt_idx_i[fg_mask_i] if overlap: gt_mask = masks_i == (mask_idx + 1).view(-1, 1, 1) gt_mask = gt_mask.float() else: gt_mask = masks[batch_idx.view(-1) == i][mask_idx] loss += self.single_mask_loss( gt_mask, pred_masks_i[fg_mask_i], proto_i, mxyxy_i[fg_mask_i], marea_i[fg_mask_i] ) # WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove else: loss += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss return loss / fg_mask.sum() class v8PoseLoss(v8DetectionLoss): """Criterion class for computing training losses.""" def __init__(self, model): # model must be de-paralleled """Initializes v8PoseLoss with model, sets keypoint variables and declares a keypoint loss instance.""" super().__init__(model) self.kpt_shape = model.model[-1].kpt_shape self.bce_pose = nn.BCEWithLogitsLoss() is_pose = self.kpt_shape == [17, 3] nkpt = self.kpt_shape[0] # number of keypoints sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt self.keypoint_loss = KeypointLoss(sigmas=sigmas) def __call__(self, preds, batch): """Calculate the total loss and detach it.""" loss = torch.zeros(5, device=self.device) # box, cls, dfl, kpt_location, kpt_visibility feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1] pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( (self.reg_max * 4, self.nc), 1 ) # B, grids, .. pred_scores = pred_scores.permute(0, 2, 1).contiguous() pred_distri = pred_distri.permute(0, 2, 1).contiguous() pred_kpts = pred_kpts.permute(0, 2, 1).contiguous() dtype = pred_scores.dtype imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) # Targets batch_size = pred_scores.shape[0] batch_idx = batch["batch_idx"].view(-1, 1) targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"]), 1) targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0) # Pboxes pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4) pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape)) # (b, h*w, 17, 3) _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner( pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype), anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, ) target_scores_sum = max(target_scores.sum(), 1) # Cls loss # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE # Bbox loss if fg_mask.sum(): target_bboxes /= stride_tensor loss[0], loss[4] = self.bbox_loss( pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask ) keypoints = batch["keypoints"].to(self.device).float().clone() keypoints[..., 0] *= imgsz[1] keypoints[..., 1] *= imgsz[0] loss[1], loss[2] = self.calculate_keypoints_loss( fg_mask, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts ) loss[0] *= self.hyp.box # box gain loss[1] *= self.hyp.pose # pose gain loss[2] *= self.hyp.kobj # kobj gain loss[3] *= self.hyp.cls # cls gain loss[4] *= self.hyp.dfl # dfl gain return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) @staticmethod def kpts_decode(anchor_points, pred_kpts): """Decodes predicted keypoints to image coordinates.""" y = pred_kpts.clone() y[..., :2] *= 2.0 y[..., 0] += anchor_points[:, [0]] - 0.5 y[..., 1] += anchor_points[:, [1]] - 0.5 return y def calculate_keypoints_loss( self, masks, target_gt_idx, keypoints, batch_idx, stride_tensor, target_bboxes, pred_kpts ): """ Calculate the keypoints loss for the model. This function calculates the keypoints loss and keypoints object loss for a given batch. The keypoints loss is based on the difference between the predicted keypoints and ground truth keypoints. The keypoints object loss is a binary classification loss that classifies whether a keypoint is present or not. Args: masks (torch.Tensor): Binary mask tensor indicating object presence, shape (BS, N_anchors). target_gt_idx (torch.Tensor): Index tensor mapping anchors to ground truth objects, shape (BS, N_anchors). keypoints (torch.Tensor): Ground truth keypoints, shape (N_kpts_in_batch, N_kpts_per_object, kpts_dim). batch_idx (torch.Tensor): Batch index tensor for keypoints, shape (N_kpts_in_batch, 1). stride_tensor (torch.Tensor): Stride tensor for anchors, shape (N_anchors, 1). target_bboxes (torch.Tensor): Ground truth boxes in (x1, y1, x2, y2) format, shape (BS, N_anchors, 4). pred_kpts (torch.Tensor): Predicted keypoints, shape (BS, N_anchors, N_kpts_per_object, kpts_dim). Returns: (tuple): Returns a tuple containing: - kpts_loss (torch.Tensor): The keypoints loss. - kpts_obj_loss (torch.Tensor): The keypoints object loss. """ batch_idx = batch_idx.flatten() batch_size = len(masks) # Find the maximum number of keypoints in a single image max_kpts = torch.unique(batch_idx, return_counts=True)[1].max() # Create a tensor to hold batched keypoints batched_keypoints = torch.zeros( (batch_size, max_kpts, keypoints.shape[1], keypoints.shape[2]), device=keypoints.device ) # TODO: any idea how to vectorize this? # Fill batched_keypoints with keypoints based on batch_idx for i in range(batch_size): keypoints_i = keypoints[batch_idx == i] batched_keypoints[i, : keypoints_i.shape[0]] = keypoints_i # Expand dimensions of target_gt_idx to match the shape of batched_keypoints target_gt_idx_expanded = target_gt_idx.unsqueeze(-1).unsqueeze(-1) # Use target_gt_idx_expanded to select keypoints from batched_keypoints selected_keypoints = batched_keypoints.gather( 1, target_gt_idx_expanded.expand(-1, -1, keypoints.shape[1], keypoints.shape[2]) ) # Divide coordinates by stride selected_keypoints /= stride_tensor.view(1, -1, 1, 1) kpts_loss = 0 kpts_obj_loss = 0 if masks.any(): gt_kpt = selected_keypoints[masks] area = xyxy2xywh(target_bboxes[masks])[:, 2:].prod(1, keepdim=True) pred_kpt = pred_kpts[masks] kpt_mask = gt_kpt[..., 2] != 0 if gt_kpt.shape[-1] == 3 else torch.full_like(gt_kpt[..., 0], True) kpts_loss = self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area) # pose loss if pred_kpt.shape[-1] == 3: kpts_obj_loss = self.bce_pose(pred_kpt[..., 2], kpt_mask.float()) # keypoint obj loss return kpts_loss, kpts_obj_loss class v8ClassificationLoss: """Criterion class for computing training losses.""" def __call__(self, preds, batch): """Compute the classification loss between predictions and true labels.""" loss = F.cross_entropy(preds, batch["cls"], reduction="mean") loss_items = loss.detach() return loss, loss_items class v8OBBLoss(v8DetectionLoss): """Calculates losses for object detection, classification, and box distribution in rotated YOLO models.""" def __init__(self, model): """Initializes v8OBBLoss with model, assigner, and rotated bbox loss; note model must be de-paralleled.""" super().__init__(model) self.assigner = RotatedTaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0) self.bbox_loss = RotatedBboxLoss(self.reg_max).to(self.device) def preprocess(self, targets, batch_size, scale_tensor): """Preprocesses the target counts and matches with the input batch size to output a tensor.""" if targets.shape[0] == 0: out = torch.zeros(batch_size, 0, 6, device=self.device) else: i = targets[:, 0] # image index _, counts = i.unique(return_counts=True) counts = counts.to(dtype=torch.int32) out = torch.zeros(batch_size, counts.max(), 6, device=self.device) for j in range(batch_size): matches = i == j n = matches.sum() if n: bboxes = targets[matches, 2:] bboxes[..., :4].mul_(scale_tensor) out[j, :n] = torch.cat([targets[matches, 1:2], bboxes], dim=-1) return out def __call__(self, preds, batch): """Calculate and return the loss for the YOLO model.""" loss = torch.zeros(3, device=self.device) # box, cls, dfl feats, pred_angle = preds if isinstance(preds[0], list) else preds[1] batch_size = pred_angle.shape[0] # batch size, number of masks, mask height, mask width pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split( (self.reg_max * 4, self.nc), 1 ) # b, grids, .. pred_scores = pred_scores.permute(0, 2, 1).contiguous() pred_distri = pred_distri.permute(0, 2, 1).contiguous() pred_angle = pred_angle.permute(0, 2, 1).contiguous() dtype = pred_scores.dtype imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w) anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5) # targets try: batch_idx = batch["batch_idx"].view(-1, 1) targets = torch.cat((batch_idx, batch["cls"].view(-1, 1), batch["bboxes"].view(-1, 5)), 1) rw, rh = targets[:, 4] * imgsz[0].item(), targets[:, 5] * imgsz[1].item() targets = targets[(rw >= 2) & (rh >= 2)] # filter rboxes of tiny size to stabilize training targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]]) gt_labels, gt_bboxes = targets.split((1, 5), 2) # cls, xywhr mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0.0) except RuntimeError as e: raise TypeError( "ERROR ❌ OBB dataset incorrectly formatted or not a OBB dataset.\n" "This error can occur when incorrectly training a 'OBB' model on a 'detect' dataset, " "i.e. 'yolo train model=yolov8n-obb.pt data=dota8.yaml'.\nVerify your dataset is a " "correctly formatted 'OBB' dataset using 'data=dota8.yaml' " "as an example.\nSee https://docs.ultralytics.com/datasets/obb/ for help." ) from e # Pboxes pred_bboxes = self.bbox_decode(anchor_points, pred_distri, pred_angle) # xyxy, (b, h*w, 4) bboxes_for_assigner = pred_bboxes.clone().detach() # Only the first four elements need to be scaled bboxes_for_assigner[..., :4] *= stride_tensor _, target_bboxes, target_scores, fg_mask, _ = self.assigner( pred_scores.detach().sigmoid(), bboxes_for_assigner.type(gt_bboxes.dtype), anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt, ) target_scores_sum = max(target_scores.sum(), 1) # Cls loss # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE # Bbox loss if fg_mask.sum(): target_bboxes[..., :4] /= stride_tensor loss[0], loss[2] = self.bbox_loss( pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask ) else: loss[0] += (pred_angle * 0).sum() loss[0] *= self.hyp.box # box gain loss[1] *= self.hyp.cls # cls gain loss[2] *= self.hyp.dfl # dfl gain return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) def bbox_decode(self, anchor_points, pred_dist, pred_angle): """ Decode predicted object bounding box coordinates from anchor points and distribution. Args: anchor_points (torch.Tensor): Anchor points, (h*w, 2). pred_dist (torch.Tensor): Predicted rotated distance, (bs, h*w, 4). pred_angle (torch.Tensor): Predicted angle, (bs, h*w, 1). Returns: (torch.Tensor): Predicted rotated bounding boxes with angles, (bs, h*w, 5). """ if self.use_dfl: b, a, c = pred_dist.shape # batch, anchors, channels pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype)) return torch.cat((dist2rbox(pred_dist, pred_angle, anchor_points), pred_angle), dim=-1) class E2EDetectLoss: """Criterion class for computing training losses.""" def __init__(self, model): """Initialize E2EDetectLoss with one-to-many and one-to-one detection losses using the provided model.""" self.one2many = v8DetectionLoss(model, tal_topk=10) self.one2one = v8DetectionLoss(model, tal_topk=1) def __call__(self, preds, batch): """Calculate the sum of the loss for box, cls and dfl multiplied by batch size.""" preds = preds[1] if isinstance(preds, tuple) else preds one2many = preds["one2many"] loss_one2many = self.one2many(one2many, batch) one2one = preds["one2one"] loss_one2one = self.one2one(one2one, batch) return loss_one2many[0] + loss_one2one[0], loss_one2many[1] + loss_one2one[1]