# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib import pickle import re import types from copy import deepcopy from pathlib import Path import torch import torch.nn as nn from ultralytics.nn.modules import ( AIFI, C1, C2, C2PSA, C3, C3TR, ELAN1, OBB, PSA, SPP, SPPELAN, SPPF, AConv, ADown, Bottleneck, BottleneckCSP, C2f, C2fAttn, C2fCIB, C2fPSA, C3Ghost, C3k2, C3x, CBFuse, CBLinear, Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, ImagePoolingAttn, Pose, RepC3, RepConv, RepNCSPELAN4, RepVGGDW, ResNetLayer, RTDETRDecoder, SCDown, Segment, WorldDetect, v10Detect, ) from ultralytics.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load from ultralytics.utils.checks import check_requirements, check_suffix, check_yaml from ultralytics.utils.loss import ( E2EDetectLoss, v8ClassificationLoss, v8DetectionLoss, v8OBBLoss, v8PoseLoss, v8SegmentationLoss, ) from ultralytics.utils.ops import make_divisible from ultralytics.utils.plotting import feature_visualization from ultralytics.utils.torch_utils import ( fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights, intersect_dicts, model_info, scale_img, time_sync, ) try: import thop except ImportError: thop = None class BaseModel(nn.Module): """The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family.""" def forward(self, x, *args, **kwargs): """ Perform forward pass of the model for either training or inference. If x is a dict, calculates and returns the loss for training. Otherwise, returns predictions for inference. Args: x (torch.Tensor | dict): Input tensor for inference, or dict with image tensor and labels for training. *args (Any): Variable length argument list. **kwargs (Any): Arbitrary keyword arguments. Returns: (torch.Tensor): Loss if x is a dict (training), or network predictions (inference). """ if isinstance(x, dict): # for cases of training and validating while training. return self.loss(x, *args, **kwargs) return self.predict(x, *args, **kwargs) def predict(self, x, profile=False, visualize=False, augment=False, embed=None): """ Perform a forward pass through the network. Args: x (torch.Tensor): The input tensor to the model. profile (bool): Print the computation time of each layer if True, defaults to False. visualize (bool): Save the feature maps of the model if True, defaults to False. augment (bool): Augment image during prediction, defaults to False. embed (list, optional): A list of feature vectors/embeddings to return. Returns: (torch.Tensor): The last output of the model. """ if augment: return self._predict_augment(x) return self._predict_once(x, profile, visualize, embed) def _predict_once(self, x, profile=False, visualize=False, embed=None): """ Perform a forward pass through the network. Args: x (torch.Tensor): The input tensor to the model. profile (bool): Print the computation time of each layer if True, defaults to False. visualize (bool): Save the feature maps of the model if True, defaults to False. embed (list, optional): A list of feature vectors/embeddings to return. Returns: (torch.Tensor): The last output of the model. """ y, dt, embeddings = [], [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) if embed and m.i in embed: embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten if m.i == max(embed): return torch.unbind(torch.cat(embeddings, 1), dim=0) return x def _predict_augment(self, x): """Perform augmentations on input image x and return augmented inference.""" LOGGER.warning( f"WARNING ⚠️ {self.__class__.__name__} does not support 'augment=True' prediction. " f"Reverting to single-scale prediction." ) return self._predict_once(x) def _profile_one_layer(self, m, x, dt): """ Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results to the provided list. Args: m (nn.Module): The layer to be profiled. x (torch.Tensor): The input data to the layer. dt (list): A list to store the computation time of the layer. Returns: None """ c = m == self.model[-1] and isinstance(x, list) # is final layer list, copy input as inplace fix flops = thop.profile(m, inputs=[x.copy() if c else x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs t = time_sync() for _ in range(10): m(x.copy() if c else x) dt.append((time_sync() - t) * 100) if m == self.model[0]: LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") LOGGER.info(f"{dt[-1]:10.2f} {flops:10.2f} {m.np:10.0f} {m.type}") if c: LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") def fuse(self, verbose=True): """ Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the computation efficiency. Returns: (nn.Module): The fused model is returned. """ if not self.is_fused(): for m in self.model.modules(): if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, "bn"): if isinstance(m, Conv2): m.fuse_convs() m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, "bn") # remove batchnorm m.forward = m.forward_fuse # update forward if isinstance(m, ConvTranspose) and hasattr(m, "bn"): m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn) delattr(m, "bn") # remove batchnorm m.forward = m.forward_fuse # update forward if isinstance(m, RepConv): m.fuse_convs() m.forward = m.forward_fuse # update forward if isinstance(m, RepVGGDW): m.fuse() m.forward = m.forward_fuse self.info(verbose=verbose) return self def is_fused(self, thresh=10): """ Check if the model has less than a certain threshold of BatchNorm layers. Args: thresh (int, optional): The threshold number of BatchNorm layers. Default is 10. Returns: (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise. """ bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d() return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model def info(self, detailed=False, verbose=True, imgsz=640): """ Prints model information. Args: detailed (bool): if True, prints out detailed information about the model. Defaults to False verbose (bool): if True, prints out the model information. Defaults to False imgsz (int): the size of the image that the model will be trained on. Defaults to 640 """ return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz) def _apply(self, fn): """ Applies a function to all the tensors in the model that are not parameters or registered buffers. Args: fn (function): the function to apply to the model Returns: (BaseModel): An updated BaseModel object. """ self = super()._apply(fn) m = self.model[-1] # Detect() if isinstance(m, Detect): # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect m.stride = fn(m.stride) m.anchors = fn(m.anchors) m.strides = fn(m.strides) return self def load(self, weights, verbose=True): """ Load the weights into the model. Args: weights (dict | torch.nn.Module): The pre-trained weights to be loaded. verbose (bool, optional): Whether to log the transfer progress. Defaults to True. """ model = weights["model"] if isinstance(weights, dict) else weights # torchvision models are not dicts csd = model.float().state_dict() # checkpoint state_dict as FP32 csd = intersect_dicts(csd, self.state_dict()) # intersect self.load_state_dict(csd, strict=False) # load if verbose: LOGGER.info(f"Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights") def loss(self, batch, preds=None): """ Compute loss. Args: batch (dict): Batch to compute loss on preds (torch.Tensor | List[torch.Tensor]): Predictions. """ if getattr(self, "criterion", None) is None: self.criterion = self.init_criterion() preds = self.forward(batch["img"]) if preds is None else preds return self.criterion(preds, batch) def init_criterion(self): """Initialize the loss criterion for the BaseModel.""" raise NotImplementedError("compute_loss() needs to be implemented by task heads") class DetectionModel(BaseModel): """YOLOv8 detection model.""" def __init__(self, cfg="yolov8n.yaml", ch=3, nc=None, verbose=True): # model, input channels, number of classes """Initialize the YOLOv8 detection model with the given config and parameters.""" super().__init__() self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict if self.yaml["backbone"][0][2] == "Silence": LOGGER.warning( "WARNING ⚠️ YOLOv9 `Silence` module is deprecated in favor of nn.Identity. " "Please delete local *.pt file and re-download the latest model checkpoint." ) self.yaml["backbone"][0][2] = "nn.Identity" # Define model ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels if nc and nc != self.yaml["nc"]: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml["nc"] = nc # override YAML value self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist self.names = {i: f"{i}" for i in range(self.yaml["nc"])} # default names dict self.inplace = self.yaml.get("inplace", True) self.end2end = getattr(self.model[-1], "end2end", False) # Build strides m = self.model[-1] # Detect() if isinstance(m, Detect): # includes all Detect subclasses like Segment, Pose, OBB, WorldDetect s = 256 # 2x min stride m.inplace = self.inplace def _forward(x): """Performs a forward pass through the model, handling different Detect subclass types accordingly.""" if self.end2end: return self.forward(x)["one2many"] return self.forward(x)[0] if isinstance(m, (Segment, Pose, OBB)) else self.forward(x) m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward self.stride = m.stride m.bias_init() # only run once else: self.stride = torch.Tensor([32]) # default stride for i.e. RTDETR # Init weights, biases initialize_weights(self) if verbose: self.info() LOGGER.info("") def _predict_augment(self, x): """Perform augmentations on input image x and return augmented inference and train outputs.""" if getattr(self, "end2end", False) or self.__class__.__name__ != "DetectionModel": LOGGER.warning("WARNING ⚠️ Model does not support 'augment=True', reverting to single-scale prediction.") return self._predict_once(x) img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = super().predict(xi)[0] # forward yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) y = self._clip_augmented(y) # clip augmented tails return torch.cat(y, -1), None # augmented inference, train @staticmethod def _descale_pred(p, flips, scale, img_size, dim=1): """De-scale predictions following augmented inference (inverse operation).""" p[:, :4] /= scale # de-scale x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim) if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr return torch.cat((x, y, wh, cls), dim) def _clip_augmented(self, y): """Clip YOLO augmented inference tails.""" nl = self.model[-1].nl # number of detection layers (P3-P5) g = sum(4**x for x in range(nl)) # grid points e = 1 # exclude layer count i = (y[0].shape[-1] // g) * sum(4**x for x in range(e)) # indices y[0] = y[0][..., :-i] # large i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices y[-1] = y[-1][..., i:] # small return y def init_criterion(self): """Initialize the loss criterion for the DetectionModel.""" return E2EDetectLoss(self) if getattr(self, "end2end", False) else v8DetectionLoss(self) class OBBModel(DetectionModel): """YOLOv8 Oriented Bounding Box (OBB) model.""" def __init__(self, cfg="yolov8n-obb.yaml", ch=3, nc=None, verbose=True): """Initialize YOLOv8 OBB model with given config and parameters.""" super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) def init_criterion(self): """Initialize the loss criterion for the model.""" return v8OBBLoss(self) class SegmentationModel(DetectionModel): """YOLOv8 segmentation model.""" def __init__(self, cfg="yolov8n-seg.yaml", ch=3, nc=None, verbose=True): """Initialize YOLOv8 segmentation model with given config and parameters.""" super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) def init_criterion(self): """Initialize the loss criterion for the SegmentationModel.""" return v8SegmentationLoss(self) class PoseModel(DetectionModel): """YOLOv8 pose model.""" def __init__(self, cfg="yolov8n-pose.yaml", ch=3, nc=None, data_kpt_shape=(None, None), verbose=True): """Initialize YOLOv8 Pose model.""" if not isinstance(cfg, dict): cfg = yaml_model_load(cfg) # load model YAML if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg["kpt_shape"]): LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}") cfg["kpt_shape"] = data_kpt_shape super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) def init_criterion(self): """Initialize the loss criterion for the PoseModel.""" return v8PoseLoss(self) class ClassificationModel(BaseModel): """YOLOv8 classification model.""" def __init__(self, cfg="yolov8n-cls.yaml", ch=3, nc=None, verbose=True): """Init ClassificationModel with YAML, channels, number of classes, verbose flag.""" super().__init__() self._from_yaml(cfg, ch, nc, verbose) def _from_yaml(self, cfg, ch, nc, verbose): """Set YOLOv8 model configurations and define the model architecture.""" self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict # Define model ch = self.yaml["ch"] = self.yaml.get("ch", ch) # input channels if nc and nc != self.yaml["nc"]: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml["nc"] = nc # override YAML value elif not nc and not self.yaml.get("nc", None): raise ValueError("nc not specified. Must specify nc in model.yaml or function arguments.") self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist self.stride = torch.Tensor([1]) # no stride constraints self.names = {i: f"{i}" for i in range(self.yaml["nc"])} # default names dict self.info() @staticmethod def reshape_outputs(model, nc): """Update a TorchVision classification model to class count 'n' if required.""" name, m = list((model.model if hasattr(model, "model") else model).named_children())[-1] # last module if isinstance(m, Classify): # YOLO Classify() head if m.linear.out_features != nc: m.linear = nn.Linear(m.linear.in_features, nc) elif isinstance(m, nn.Linear): # ResNet, EfficientNet if m.out_features != nc: setattr(model, name, nn.Linear(m.in_features, nc)) elif isinstance(m, nn.Sequential): types = [type(x) for x in m] if nn.Linear in types: i = len(types) - 1 - types[::-1].index(nn.Linear) # last nn.Linear index if m[i].out_features != nc: m[i] = nn.Linear(m[i].in_features, nc) elif nn.Conv2d in types: i = len(types) - 1 - types[::-1].index(nn.Conv2d) # last nn.Conv2d index if m[i].out_channels != nc: m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) def init_criterion(self): """Initialize the loss criterion for the ClassificationModel.""" return v8ClassificationLoss() class RTDETRDetectionModel(DetectionModel): """ RTDETR (Real-time DEtection and Tracking using Transformers) Detection Model class. This class is responsible for constructing the RTDETR architecture, defining loss functions, and facilitating both the training and inference processes. RTDETR is an object detection and tracking model that extends from the DetectionModel base class. Attributes: cfg (str): The configuration file path or preset string. Default is 'rtdetr-l.yaml'. ch (int): Number of input channels. Default is 3 (RGB). nc (int, optional): Number of classes for object detection. Default is None. verbose (bool): Specifies if summary statistics are shown during initialization. Default is True. Methods: init_criterion: Initializes the criterion used for loss calculation. loss: Computes and returns the loss during training. predict: Performs a forward pass through the network and returns the output. """ def __init__(self, cfg="rtdetr-l.yaml", ch=3, nc=None, verbose=True): """ Initialize the RTDETRDetectionModel. Args: cfg (str): Configuration file name or path. ch (int): Number of input channels. nc (int, optional): Number of classes. Defaults to None. verbose (bool, optional): Print additional information during initialization. Defaults to True. """ super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) def init_criterion(self): """Initialize the loss criterion for the RTDETRDetectionModel.""" from ultralytics.models.utils.loss import RTDETRDetectionLoss return RTDETRDetectionLoss(nc=self.nc, use_vfl=True) def loss(self, batch, preds=None): """ Compute the loss for the given batch of data. Args: batch (dict): Dictionary containing image and label data. preds (torch.Tensor, optional): Precomputed model predictions. Defaults to None. Returns: (tuple): A tuple containing the total loss and main three losses in a tensor. """ if not hasattr(self, "criterion"): self.criterion = self.init_criterion() img = batch["img"] # NOTE: preprocess gt_bbox and gt_labels to list. bs = len(img) batch_idx = batch["batch_idx"] gt_groups = [(batch_idx == i).sum().item() for i in range(bs)] targets = { "cls": batch["cls"].to(img.device, dtype=torch.long).view(-1), "bboxes": batch["bboxes"].to(device=img.device), "batch_idx": batch_idx.to(img.device, dtype=torch.long).view(-1), "gt_groups": gt_groups, } preds = self.predict(img, batch=targets) if preds is None else preds dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if self.training else preds[1] if dn_meta is None: dn_bboxes, dn_scores = None, None else: dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta["dn_num_split"], dim=2) dn_scores, dec_scores = torch.split(dec_scores, dn_meta["dn_num_split"], dim=2) dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes]) # (7, bs, 300, 4) dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores]) loss = self.criterion( (dec_bboxes, dec_scores), targets, dn_bboxes=dn_bboxes, dn_scores=dn_scores, dn_meta=dn_meta ) # NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses. return sum(loss.values()), torch.as_tensor( [loss[k].detach() for k in ["loss_giou", "loss_class", "loss_bbox"]], device=img.device ) def predict(self, x, profile=False, visualize=False, batch=None, augment=False, embed=None): """ Perform a forward pass through the model. Args: x (torch.Tensor): The input tensor. profile (bool, optional): If True, profile the computation time for each layer. Defaults to False. visualize (bool, optional): If True, save feature maps for visualization. Defaults to False. batch (dict, optional): Ground truth data for evaluation. Defaults to None. augment (bool, optional): If True, perform data augmentation during inference. Defaults to False. embed (list, optional): A list of feature vectors/embeddings to return. Returns: (torch.Tensor): Model's output tensor. """ y, dt, embeddings = [], [], [] # outputs for m in self.model[:-1]: # except the head part if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) if embed and m.i in embed: embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten if m.i == max(embed): return torch.unbind(torch.cat(embeddings, 1), dim=0) head = self.model[-1] x = head([y[j] for j in head.f], batch) # head inference return x class WorldModel(DetectionModel): """YOLOv8 World Model.""" def __init__(self, cfg="yolov8s-world.yaml", ch=3, nc=None, verbose=True): """Initialize YOLOv8 world model with given config and parameters.""" self.txt_feats = torch.randn(1, nc or 80, 512) # features placeholder self.clip_model = None # CLIP model placeholder super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) def set_classes(self, text, batch=80, cache_clip_model=True): """Set classes in advance so that model could do offline-inference without clip model.""" try: import clip except ImportError: check_requirements("git+https://github.com/ultralytics/CLIP.git") import clip if ( not getattr(self, "clip_model", None) and cache_clip_model ): # for backwards compatibility of models lacking clip_model attribute self.clip_model = clip.load("ViT-B/32")[0] model = self.clip_model if cache_clip_model else clip.load("ViT-B/32")[0] device = next(model.parameters()).device text_token = clip.tokenize(text).to(device) txt_feats = [model.encode_text(token).detach() for token in text_token.split(batch)] txt_feats = txt_feats[0] if len(txt_feats) == 1 else torch.cat(txt_feats, dim=0) txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True) self.txt_feats = txt_feats.reshape(-1, len(text), txt_feats.shape[-1]) self.model[-1].nc = len(text) def predict(self, x, profile=False, visualize=False, txt_feats=None, augment=False, embed=None): """ Perform a forward pass through the model. Args: x (torch.Tensor): The input tensor. profile (bool, optional): If True, profile the computation time for each layer. Defaults to False. visualize (bool, optional): If True, save feature maps for visualization. Defaults to False. txt_feats (torch.Tensor): The text features, use it if it's given. Defaults to None. augment (bool, optional): If True, perform data augmentation during inference. Defaults to False. embed (list, optional): A list of feature vectors/embeddings to return. Returns: (torch.Tensor): Model's output tensor. """ txt_feats = (self.txt_feats if txt_feats is None else txt_feats).to(device=x.device, dtype=x.dtype) if len(txt_feats) != len(x): txt_feats = txt_feats.repeat(len(x), 1, 1) ori_txt_feats = txt_feats.clone() y, dt, embeddings = [], [], [] # outputs for m in self.model: # except the head part if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) if isinstance(m, C2fAttn): x = m(x, txt_feats) elif isinstance(m, WorldDetect): x = m(x, ori_txt_feats) elif isinstance(m, ImagePoolingAttn): txt_feats = m(x, txt_feats) else: x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) if embed and m.i in embed: embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten if m.i == max(embed): return torch.unbind(torch.cat(embeddings, 1), dim=0) return x def loss(self, batch, preds=None): """ Compute loss. Args: batch (dict): Batch to compute loss on. preds (torch.Tensor | List[torch.Tensor]): Predictions. """ if not hasattr(self, "criterion"): self.criterion = self.init_criterion() if preds is None: preds = self.forward(batch["img"], txt_feats=batch["txt_feats"]) return self.criterion(preds, batch) class Ensemble(nn.ModuleList): """Ensemble of models.""" def __init__(self): """Initialize an ensemble of models.""" super().__init__() def forward(self, x, augment=False, profile=False, visualize=False): """Function generates the YOLO network's final layer.""" y = [module(x, augment, profile, visualize)[0] for module in self] # y = torch.stack(y).max(0)[0] # max ensemble # y = torch.stack(y).mean(0) # mean ensemble y = torch.cat(y, 2) # nms ensemble, y shape(B, HW, C) return y, None # inference, train output # Functions ------------------------------------------------------------------------------------------------------------ @contextlib.contextmanager def temporary_modules(modules=None, attributes=None): """ Context manager for temporarily adding or modifying modules in Python's module cache (`sys.modules`). This function can be used to change the module paths during runtime. It's useful when refactoring code, where you've moved a module from one location to another, but you still want to support the old import paths for backwards compatibility. Args: modules (dict, optional): A dictionary mapping old module paths to new module paths. attributes (dict, optional): A dictionary mapping old module attributes to new module attributes. Example: ```python with temporary_modules({"old.module": "new.module"}, {"old.module.attribute": "new.module.attribute"}): import old.module # this will now import new.module from old.module import attribute # this will now import new.module.attribute ``` Note: The changes are only in effect inside the context manager and are undone once the context manager exits. Be aware that directly manipulating `sys.modules` can lead to unpredictable results, especially in larger applications or libraries. Use this function with caution. """ if modules is None: modules = {} if attributes is None: attributes = {} import sys from importlib import import_module try: # Set attributes in sys.modules under their old name for old, new in attributes.items(): old_module, old_attr = old.rsplit(".", 1) new_module, new_attr = new.rsplit(".", 1) setattr(import_module(old_module), old_attr, getattr(import_module(new_module), new_attr)) # Set modules in sys.modules under their old name for old, new in modules.items(): sys.modules[old] = import_module(new) yield finally: # Remove the temporary module paths for old in modules: if old in sys.modules: del sys.modules[old] class SafeClass: """A placeholder class to replace unknown classes during unpickling.""" def __init__(self, *args, **kwargs): """Initialize SafeClass instance, ignoring all arguments.""" pass def __call__(self, *args, **kwargs): """Run SafeClass instance, ignoring all arguments.""" pass class SafeUnpickler(pickle.Unpickler): """Custom Unpickler that replaces unknown classes with SafeClass.""" def find_class(self, module, name): """Attempt to find a class, returning SafeClass if not among safe modules.""" safe_modules = ( "torch", "collections", "collections.abc", "builtins", "math", "numpy", # Add other modules considered safe ) if module in safe_modules: return super().find_class(module, name) else: return SafeClass def torch_safe_load(weight, safe_only=False): """ Attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, it catches the error, logs a warning message, and attempts to install the missing module via the check_requirements() function. After installation, the function again attempts to load the model using torch.load(). Args: weight (str): The file path of the PyTorch model. safe_only (bool): If True, replace unknown classes with SafeClass during loading. Example: ```python from ultralytics.nn.tasks import torch_safe_load ckpt, file = torch_safe_load("path/to/best.pt", safe_only=True) ``` Returns: ckpt (dict): The loaded model checkpoint. file (str): The loaded filename """ from ultralytics.utils.downloads import attempt_download_asset check_suffix(file=weight, suffix=".pt") file = attempt_download_asset(weight) # search online if missing locally try: with temporary_modules( modules={ "ultralytics.yolo.utils": "ultralytics.utils", "ultralytics.yolo.v8": "ultralytics.models.yolo", "ultralytics.yolo.data": "ultralytics.data", }, attributes={ "ultralytics.nn.modules.block.Silence": "torch.nn.Identity", # YOLOv9e "ultralytics.nn.tasks.YOLOv10DetectionModel": "ultralytics.nn.tasks.DetectionModel", # YOLOv10 "ultralytics.utils.loss.v10DetectLoss": "ultralytics.utils.loss.E2EDetectLoss", # YOLOv10 }, ): if safe_only: # Load via custom pickle module safe_pickle = types.ModuleType("safe_pickle") safe_pickle.Unpickler = SafeUnpickler safe_pickle.load = lambda file_obj: SafeUnpickler(file_obj).load() with open(file, "rb") as f: ckpt = torch.load(f, pickle_module=safe_pickle) else: ckpt = torch.load(file, map_location="cpu") except ModuleNotFoundError as e: # e.name is missing module name if e.name == "models": raise TypeError( emojis( f"ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained " f"with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with " f"YOLOv8 at https://github.com/ultralytics/ultralytics." f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to " f"run a command with an official Ultralytics model, i.e. 'yolo predict model=yolov8n.pt'" ) ) from e LOGGER.warning( f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in Ultralytics requirements." f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future." f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to " f"run a command with an official Ultralytics model, i.e. 'yolo predict model=yolov8n.pt'" ) check_requirements(e.name) # install missing module ckpt = torch.load(file, map_location="cpu") if not isinstance(ckpt, dict): # File is likely a YOLO instance saved with i.e. torch.save(model, "saved_model.pt") LOGGER.warning( f"WARNING ⚠️ The file '{weight}' appears to be improperly saved or formatted. " f"For optimal results, use model.save('filename.pt') to correctly save YOLO models." ) ckpt = {"model": ckpt.model} return ckpt, file def attempt_load_weights(weights, device=None, inplace=True, fuse=False): """Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a.""" ensemble = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt, w = torch_safe_load(w) # load ckpt args = {**DEFAULT_CFG_DICT, **ckpt["train_args"]} if "train_args" in ckpt else None # combined args model = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model # Model compatibility updates model.args = args # attach args to model model.pt_path = w # attach *.pt file path to model model.task = guess_model_task(model) if not hasattr(model, "stride"): model.stride = torch.tensor([32.0]) # Append ensemble.append(model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval()) # model in eval mode # Module updates for m in ensemble.modules(): if hasattr(m, "inplace"): m.inplace = inplace elif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model if len(ensemble) == 1: return ensemble[-1] # Return ensemble LOGGER.info(f"Ensemble created with {weights}\n") for k in "names", "nc", "yaml": setattr(ensemble, k, getattr(ensemble[0], k)) ensemble.stride = ensemble[int(torch.argmax(torch.tensor([m.stride.max() for m in ensemble])))].stride assert all(ensemble[0].nc == m.nc for m in ensemble), f"Models differ in class counts {[m.nc for m in ensemble]}" return ensemble def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False): """Loads a single model weights.""" ckpt, weight = torch_safe_load(weight) # load ckpt args = {**DEFAULT_CFG_DICT, **(ckpt.get("train_args", {}))} # combine model and default args, preferring model args model = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model # Model compatibility updates model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model model.pt_path = weight # attach *.pt file path to model model.task = guess_model_task(model) if not hasattr(model, "stride"): model.stride = torch.tensor([32.0]) model = model.fuse().eval() if fuse and hasattr(model, "fuse") else model.eval() # model in eval mode # Module updates for m in model.modules(): if hasattr(m, "inplace"): m.inplace = inplace elif isinstance(m, nn.Upsample) and not hasattr(m, "recompute_scale_factor"): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model and ckpt return model, ckpt def parse_model(d, ch, verbose=True): # model_dict, input_channels(3) """Parse a YOLO model.yaml dictionary into a PyTorch model.""" import ast # Args max_channels = float("inf") nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales")) depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape")) if scales: scale = d.get("scale") if not scale: scale = tuple(scales.keys())[0] LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.") depth, width, max_channels = scales[scale] if act: Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() if verbose: LOGGER.info(f"{colorstr('activation:')} {act}") # print if verbose: LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}") ch = [ch] layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args m = getattr(torch.nn, m[3:]) if "nn." in m else globals()[m] # get module for j, a in enumerate(args): if isinstance(a, str): try: args[j] = locals()[a] if a in locals() else ast.literal_eval(a) except ValueError: pass n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain if m in { Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, C2fPSA, C2PSA, DWConv, Focus, BottleneckCSP, C1, C2, C2f, C3k2, RepNCSPELAN4, ELAN1, ADown, AConv, SPPELAN, C2fAttn, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, }: c1, c2 = ch[f], args[0] if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output) c2 = make_divisible(min(c2, max_channels) * width, 8) if m is C2fAttn: args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8) # embed channels args[2] = int( max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2] ) # num heads args = [c1, c2, *args[1:]] if m in { BottleneckCSP, C1, C2, C2f, C3k2, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fPSA, C2fCIB, C2PSA, }: args.insert(2, n) # number of repeats n = 1 if m is C3k2 and scale in "mlx": # for M/L/X sizes args[3] = True elif m is AIFI: args = [ch[f], *args] elif m in {HGStem, HGBlock}: c1, cm, c2 = ch[f], args[0], args[1] args = [c1, cm, c2, *args[2:]] if m is HGBlock: args.insert(4, n) # number of repeats n = 1 elif m is ResNetLayer: c2 = args[1] if args[3] else args[1] * 4 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[x] for x in f) elif m in {Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn, v10Detect}: args.append([ch[x] for x in f]) if m is Segment: args[2] = make_divisible(min(args[2], max_channels) * width, 8) elif m is RTDETRDecoder: # special case, channels arg must be passed in index 1 args.insert(1, [ch[x] for x in f]) elif m is CBLinear: c2 = args[0] c1 = ch[f] args = [c1, c2, *args[1:]] elif m is CBFuse: c2 = ch[f[-1]] else: c2 = ch[f] m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module t = str(m)[8:-2].replace("__main__.", "") # module type m_.np = sum(x.numel() for x in m_.parameters()) # number params m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type if verbose: LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m_.np:10.0f} {t:<45}{str(args):<30}") # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save) def yaml_model_load(path): """Load a YOLOv8 model from a YAML file.""" path = Path(path) if path.stem in (f"yolov{d}{x}6" for x in "nsmlx" for d in (5, 8)): new_stem = re.sub(r"(\d+)([nslmx])6(.+)?$", r"\1\2-p6\3", path.stem) LOGGER.warning(f"WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.") path = path.with_name(new_stem + path.suffix) unified_path = re.sub(r"(\d+)([nslmx])(.+)?$", r"\1\3", str(path)) # i.e. yolov8x.yaml -> yolov8.yaml yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path) d = yaml_load(yaml_file) # model dict d["scale"] = guess_model_scale(path) d["yaml_file"] = str(path) return d def guess_model_scale(model_path): """ Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The function uses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string. Args: model_path (str | Path): The path to the YOLO model's YAML file. Returns: (str): The size character of the model's scale, which can be n, s, m, l, or x. """ try: return re.search(r"yolo[v]?\d+([nslmx])", Path(model_path).stem).group(1) # n, s, m, l, or x except AttributeError: return "" def guess_model_task(model): """ Guess the task of a PyTorch model from its architecture or configuration. Args: model (nn.Module | dict): PyTorch model or model configuration in YAML format. Returns: (str): Task of the model ('detect', 'segment', 'classify', 'pose'). Raises: SyntaxError: If the task of the model could not be determined. """ def cfg2task(cfg): """Guess from YAML dictionary.""" m = cfg["head"][-1][-2].lower() # output module name if m in {"classify", "classifier", "cls", "fc"}: return "classify" if "detect" in m: return "detect" if m == "segment": return "segment" if m == "pose": return "pose" if m == "obb": return "obb" # Guess from model cfg if isinstance(model, dict): try: return cfg2task(model) except: # noqa E722 pass # Guess from PyTorch model if isinstance(model, nn.Module): # PyTorch model for x in "model.args", "model.model.args", "model.model.model.args": try: return eval(x)["task"] except: # noqa E722 pass for x in "model.yaml", "model.model.yaml", "model.model.model.yaml": try: return cfg2task(eval(x)) except: # noqa E722 pass for m in model.modules(): if isinstance(m, Segment): return "segment" elif isinstance(m, Classify): return "classify" elif isinstance(m, Pose): return "pose" elif isinstance(m, OBB): return "obb" elif isinstance(m, (Detect, WorldDetect, v10Detect)): return "detect" # Guess from model filename if isinstance(model, (str, Path)): model = Path(model) if "-seg" in model.stem or "segment" in model.parts: return "segment" elif "-cls" in model.stem or "classify" in model.parts: return "classify" elif "-pose" in model.stem or "pose" in model.parts: return "pose" elif "-obb" in model.stem or "obb" in model.parts: return "obb" elif "detect" in model.parts: return "detect" # Unable to determine task from model LOGGER.warning( "WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. " "Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify','pose' or 'obb'." ) return "detect" # assume detect