# Ultralytics YOLO 🚀, AGPL-3.0 license """Model head modules.""" import copy import math import torch import torch.nn as nn from torch.nn.init import constant_, xavier_uniform_ from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors from .block import DFL, BNContrastiveHead, ContrastiveHead, Proto from .conv import Conv, DWConv from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer from .utils import bias_init_with_prob, linear_init __all__ = "Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder", "v10Detect" class Detect(nn.Module): """YOLO Detect head for detection models.""" dynamic = False # force grid reconstruction export = False # export mode end2end = False # end2end max_det = 300 # max_det shape = None anchors = torch.empty(0) # init strides = torch.empty(0) # init def __init__(self, nc=80, ch=()): """Initializes the YOLO detection layer with specified number of classes and channels.""" super().__init__() self.nc = nc # number of classes self.nl = len(ch) # number of detection layers self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x) self.no = nc + self.reg_max * 4 # number of outputs per anchor self.stride = torch.zeros(self.nl) # strides computed during build c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels self.cv2 = nn.ModuleList( nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch ) self.cv3 = nn.ModuleList( nn.Sequential( nn.Sequential(DWConv(x, x, 3), Conv(x, c3, 1)), nn.Sequential(DWConv(c3, c3, 3), Conv(c3, c3, 1)), nn.Conv2d(c3, self.nc, 1), ) for x in ch ) self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity() if self.end2end: self.one2one_cv2 = copy.deepcopy(self.cv2) self.one2one_cv3 = copy.deepcopy(self.cv3) def forward(self, x): """Concatenates and returns predicted bounding boxes and class probabilities.""" if self.end2end: return self.forward_end2end(x) for i in range(self.nl): x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) if self.training: # Training path return x y = self._inference(x) return y if self.export else (y, x) def forward_end2end(self, x): """ Performs forward pass of the v10Detect module. Args: x (tensor): Input tensor. Returns: (dict, tensor): If not in training mode, returns a dictionary containing the outputs of both one2many and one2one detections. If in training mode, returns a dictionary containing the outputs of one2many and one2one detections separately. """ x_detach = [xi.detach() for xi in x] one2one = [ torch.cat((self.one2one_cv2[i](x_detach[i]), self.one2one_cv3[i](x_detach[i])), 1) for i in range(self.nl) ] for i in range(self.nl): x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) if self.training: # Training path return {"one2many": x, "one2one": one2one} y = self._inference(one2one) y = self.postprocess(y.permute(0, 2, 1), self.max_det, self.nc) return y if self.export else (y, {"one2many": x, "one2one": one2one}) def _inference(self, x): """Decode predicted bounding boxes and class probabilities based on multiple-level feature maps.""" # Inference path shape = x[0].shape # BCHW x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2) if self.dynamic or self.shape != shape: self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) self.shape = shape if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}: # avoid TF FlexSplitV ops box = x_cat[:, : self.reg_max * 4] cls = x_cat[:, self.reg_max * 4 :] else: box, cls = x_cat.split((self.reg_max * 4, self.nc), 1) if self.export and self.format in {"tflite", "edgetpu"}: # Precompute normalization factor to increase numerical stability # See https://github.com/ultralytics/ultralytics/issues/7371 grid_h = shape[2] grid_w = shape[3] grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1) norm = self.strides / (self.stride[0] * grid_size) dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2]) else: dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides return torch.cat((dbox, cls.sigmoid()), 1) def bias_init(self): """Initialize Detect() biases, WARNING: requires stride availability.""" m = self # self.model[-1] # Detect() module # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency for a, b, s in zip(m.cv2, m.cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) if self.end2end: for a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) def decode_bboxes(self, bboxes, anchors): """Decode bounding boxes.""" return dist2bbox(bboxes, anchors, xywh=not self.end2end, dim=1) @staticmethod def postprocess(preds: torch.Tensor, max_det: int, nc: int = 80): """ Post-processes YOLO model predictions. Args: preds (torch.Tensor): Raw predictions with shape (batch_size, num_anchors, 4 + nc) with last dimension format [x, y, w, h, class_probs]. max_det (int): Maximum detections per image. nc (int, optional): Number of classes. Default: 80. Returns: (torch.Tensor): Processed predictions with shape (batch_size, min(max_det, num_anchors), 6) and last dimension format [x, y, w, h, max_class_prob, class_index]. """ batch_size, anchors, _ = preds.shape # i.e. shape(16,8400,84) boxes, scores = preds.split([4, nc], dim=-1) index = scores.amax(dim=-1).topk(min(max_det, anchors))[1].unsqueeze(-1) boxes = boxes.gather(dim=1, index=index.repeat(1, 1, 4)) scores = scores.gather(dim=1, index=index.repeat(1, 1, nc)) scores, index = scores.flatten(1).topk(min(max_det, anchors)) i = torch.arange(batch_size)[..., None] # batch indices return torch.cat([boxes[i, index // nc], scores[..., None], (index % nc)[..., None].float()], dim=-1) class Segment(Detect): """YOLO Segment head for segmentation models.""" def __init__(self, nc=80, nm=32, npr=256, ch=()): """Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers.""" super().__init__(nc, ch) self.nm = nm # number of masks self.npr = npr # number of protos self.proto = Proto(ch[0], self.npr, self.nm) # protos c4 = max(ch[0] // 4, self.nm) self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch) def forward(self, x): """Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients.""" p = self.proto(x[0]) # mask protos bs = p.shape[0] # batch size mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients x = Detect.forward(self, x) if self.training: return x, mc, p return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p)) class OBB(Detect): """YOLO OBB detection head for detection with rotation models.""" def __init__(self, nc=80, ne=1, ch=()): """Initialize OBB with number of classes `nc` and layer channels `ch`.""" super().__init__(nc, ch) self.ne = ne # number of extra parameters c4 = max(ch[0] // 4, self.ne) self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch) def forward(self, x): """Concatenates and returns predicted bounding boxes and class probabilities.""" bs = x[0].shape[0] # batch size angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2) # OBB theta logits # NOTE: set `angle` as an attribute so that `decode_bboxes` could use it. angle = (angle.sigmoid() - 0.25) * math.pi # [-pi/4, 3pi/4] # angle = angle.sigmoid() * math.pi / 2 # [0, pi/2] if not self.training: self.angle = angle x = Detect.forward(self, x) if self.training: return x, angle return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle)) def decode_bboxes(self, bboxes, anchors): """Decode rotated bounding boxes.""" return dist2rbox(bboxes, self.angle, anchors, dim=1) class Pose(Detect): """YOLO Pose head for keypoints models.""" def __init__(self, nc=80, kpt_shape=(17, 3), ch=()): """Initialize YOLO network with default parameters and Convolutional Layers.""" super().__init__(nc, ch) self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total c4 = max(ch[0] // 4, self.nk) self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch) def forward(self, x): """Perform forward pass through YOLO model and return predictions.""" bs = x[0].shape[0] # batch size kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w) x = Detect.forward(self, x) if self.training: return x, kpt pred_kpt = self.kpts_decode(bs, kpt) return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt)) def kpts_decode(self, bs, kpts): """Decodes keypoints.""" ndim = self.kpt_shape[1] if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug y = kpts.view(bs, *self.kpt_shape, -1) a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides if ndim == 3: a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2) return a.view(bs, self.nk, -1) else: y = kpts.clone() if ndim == 3: y[:, 2::3] = y[:, 2::3].sigmoid() # sigmoid (WARNING: inplace .sigmoid_() Apple MPS bug) y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides return y class Classify(nn.Module): """YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2).""" def __init__(self, c1, c2, k=1, s=1, p=None, g=1): """Initializes YOLO classification head to transform input tensor from (b,c1,20,20) to (b,c2) shape.""" super().__init__() c_ = 1280 # efficientnet_b0 size self.conv = Conv(c1, c_, k, s, p, g) self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1) self.drop = nn.Dropout(p=0.0, inplace=True) self.linear = nn.Linear(c_, c2) # to x(b,c2) def forward(self, x): """Performs a forward pass of the YOLO model on input image data.""" if isinstance(x, list): x = torch.cat(x, 1) x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1))) return x if self.training else x.softmax(1) class WorldDetect(Detect): """Head for integrating YOLO detection models with semantic understanding from text embeddings.""" def __init__(self, nc=80, embed=512, with_bn=False, ch=()): """Initialize YOLO detection layer with nc classes and layer channels ch.""" super().__init__(nc, ch) c3 = max(ch[0], min(self.nc, 100)) self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch) self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch) def forward(self, x, text): """Concatenates and returns predicted bounding boxes and class probabilities.""" for i in range(self.nl): x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1) if self.training: return x # Inference path shape = x[0].shape # BCHW x_cat = torch.cat([xi.view(shape[0], self.nc + self.reg_max * 4, -1) for xi in x], 2) if self.dynamic or self.shape != shape: self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) self.shape = shape if self.export and self.format in {"saved_model", "pb", "tflite", "edgetpu", "tfjs"}: # avoid TF FlexSplitV ops box = x_cat[:, : self.reg_max * 4] cls = x_cat[:, self.reg_max * 4 :] else: box, cls = x_cat.split((self.reg_max * 4, self.nc), 1) if self.export and self.format in {"tflite", "edgetpu"}: # Precompute normalization factor to increase numerical stability # See https://github.com/ultralytics/ultralytics/issues/7371 grid_h = shape[2] grid_w = shape[3] grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1) norm = self.strides / (self.stride[0] * grid_size) dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2]) else: dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides y = torch.cat((dbox, cls.sigmoid()), 1) return y if self.export else (y, x) def bias_init(self): """Initialize Detect() biases, WARNING: requires stride availability.""" m = self # self.model[-1] # Detect() module # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency for a, b, s in zip(m.cv2, m.cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box # b[-1].bias.data[:] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img) class RTDETRDecoder(nn.Module): """ Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection. This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes and class labels for objects in an image. It integrates features from multiple layers and runs through a series of Transformer decoder layers to output the final predictions. """ export = False # export mode def __init__( self, nc=80, ch=(512, 1024, 2048), hd=256, # hidden dim nq=300, # num queries ndp=4, # num decoder points nh=8, # num head ndl=6, # num decoder layers d_ffn=1024, # dim of feedforward dropout=0.0, act=nn.ReLU(), eval_idx=-1, # Training args nd=100, # num denoising label_noise_ratio=0.5, box_noise_scale=1.0, learnt_init_query=False, ): """ Initializes the RTDETRDecoder module with the given parameters. Args: nc (int): Number of classes. Default is 80. ch (tuple): Channels in the backbone feature maps. Default is (512, 1024, 2048). hd (int): Dimension of hidden layers. Default is 256. nq (int): Number of query points. Default is 300. ndp (int): Number of decoder points. Default is 4. nh (int): Number of heads in multi-head attention. Default is 8. ndl (int): Number of decoder layers. Default is 6. d_ffn (int): Dimension of the feed-forward networks. Default is 1024. dropout (float): Dropout rate. Default is 0. act (nn.Module): Activation function. Default is nn.ReLU. eval_idx (int): Evaluation index. Default is -1. nd (int): Number of denoising. Default is 100. label_noise_ratio (float): Label noise ratio. Default is 0.5. box_noise_scale (float): Box noise scale. Default is 1.0. learnt_init_query (bool): Whether to learn initial query embeddings. Default is False. """ super().__init__() self.hidden_dim = hd self.nhead = nh self.nl = len(ch) # num level self.nc = nc self.num_queries = nq self.num_decoder_layers = ndl # Backbone feature projection self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch) # NOTE: simplified version but it's not consistent with .pt weights. # self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch) # Transformer module decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp) self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx) # Denoising part self.denoising_class_embed = nn.Embedding(nc, hd) self.num_denoising = nd self.label_noise_ratio = label_noise_ratio self.box_noise_scale = box_noise_scale # Decoder embedding self.learnt_init_query = learnt_init_query if learnt_init_query: self.tgt_embed = nn.Embedding(nq, hd) self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2) # Encoder head self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd)) self.enc_score_head = nn.Linear(hd, nc) self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3) # Decoder head self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)]) self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)]) self._reset_parameters() def forward(self, x, batch=None): """Runs the forward pass of the module, returning bounding box and classification scores for the input.""" from ultralytics.models.utils.ops import get_cdn_group # Input projection and embedding feats, shapes = self._get_encoder_input(x) # Prepare denoising training dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group( batch, self.nc, self.num_queries, self.denoising_class_embed.weight, self.num_denoising, self.label_noise_ratio, self.box_noise_scale, self.training, ) embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox) # Decoder dec_bboxes, dec_scores = self.decoder( embed, refer_bbox, feats, shapes, self.dec_bbox_head, self.dec_score_head, self.query_pos_head, attn_mask=attn_mask, ) x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta if self.training: return x # (bs, 300, 4+nc) y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1) return y if self.export else (y, x) def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device="cpu", eps=1e-2): """Generates anchor bounding boxes for given shapes with specific grid size and validates them.""" anchors = [] for i, (h, w) in enumerate(shapes): sy = torch.arange(end=h, dtype=dtype, device=device) sx = torch.arange(end=w, dtype=dtype, device=device) grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx) grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2) valid_WH = torch.tensor([w, h], dtype=dtype, device=device) grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2) wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i) anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4) anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4) valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1 anchors = torch.log(anchors / (1 - anchors)) anchors = anchors.masked_fill(~valid_mask, float("inf")) return anchors, valid_mask def _get_encoder_input(self, x): """Processes and returns encoder inputs by getting projection features from input and concatenating them.""" # Get projection features x = [self.input_proj[i](feat) for i, feat in enumerate(x)] # Get encoder inputs feats = [] shapes = [] for feat in x: h, w = feat.shape[2:] # [b, c, h, w] -> [b, h*w, c] feats.append(feat.flatten(2).permute(0, 2, 1)) # [nl, 2] shapes.append([h, w]) # [b, h*w, c] feats = torch.cat(feats, 1) return feats, shapes def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None): """Generates and prepares the input required for the decoder from the provided features and shapes.""" bs = feats.shape[0] # Prepare input for decoder anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device) features = self.enc_output(valid_mask * feats) # bs, h*w, 256 enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc) # Query selection # (bs, num_queries) topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1) # (bs, num_queries) batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1) # (bs, num_queries, 256) top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1) # (bs, num_queries, 4) top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1) # Dynamic anchors + static content refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors enc_bboxes = refer_bbox.sigmoid() if dn_bbox is not None: refer_bbox = torch.cat([dn_bbox, refer_bbox], 1) enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1) embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features if self.training: refer_bbox = refer_bbox.detach() if not self.learnt_init_query: embeddings = embeddings.detach() if dn_embed is not None: embeddings = torch.cat([dn_embed, embeddings], 1) return embeddings, refer_bbox, enc_bboxes, enc_scores # TODO def _reset_parameters(self): """Initializes or resets the parameters of the model's various components with predefined weights and biases.""" # Class and bbox head init bias_cls = bias_init_with_prob(0.01) / 80 * self.nc # NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets. # linear_init(self.enc_score_head) constant_(self.enc_score_head.bias, bias_cls) constant_(self.enc_bbox_head.layers[-1].weight, 0.0) constant_(self.enc_bbox_head.layers[-1].bias, 0.0) for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head): # linear_init(cls_) constant_(cls_.bias, bias_cls) constant_(reg_.layers[-1].weight, 0.0) constant_(reg_.layers[-1].bias, 0.0) linear_init(self.enc_output[0]) xavier_uniform_(self.enc_output[0].weight) if self.learnt_init_query: xavier_uniform_(self.tgt_embed.weight) xavier_uniform_(self.query_pos_head.layers[0].weight) xavier_uniform_(self.query_pos_head.layers[1].weight) for layer in self.input_proj: xavier_uniform_(layer[0].weight) class v10Detect(Detect): """ v10 Detection head from https://arxiv.org/pdf/2405.14458. Args: nc (int): Number of classes. ch (tuple): Tuple of channel sizes. Attributes: max_det (int): Maximum number of detections. Methods: __init__(self, nc=80, ch=()): Initializes the v10Detect object. forward(self, x): Performs forward pass of the v10Detect module. bias_init(self): Initializes biases of the Detect module. """ end2end = True def __init__(self, nc=80, ch=()): """Initializes the v10Detect object with the specified number of classes and input channels.""" super().__init__(nc, ch) c3 = max(ch[0], min(self.nc, 100)) # channels # Light cls head self.cv3 = nn.ModuleList( nn.Sequential( nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)), nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)), nn.Conv2d(c3, self.nc, 1), ) for x in ch ) self.one2one_cv3 = copy.deepcopy(self.cv3)