# Ultralytics YOLO 🚀, AGPL-3.0 license """Block modules.""" import torch import torch.nn as nn import torch.nn.functional as F from ultralytics.utils.torch_utils import fuse_conv_and_bn from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad from .transformer import TransformerBlock __all__ = ( "DFL", "HGBlock", "HGStem", "SPP", "SPPF", "C1", "C2", "C3", "C2f", "C2fAttn", "ImagePoolingAttn", "ContrastiveHead", "BNContrastiveHead", "C3x", "C3TR", "C3Ghost", "GhostBottleneck", "Bottleneck", "BottleneckCSP", "Proto", "RepC3", "ResNetLayer", "RepNCSPELAN4", "ELAN1", "ADown", "AConv", "SPPELAN", "CBFuse", "CBLinear", "C3k2", "C2fPSA", "C2PSA", "RepVGGDW", "CIB", "C2fCIB", "Attention", "PSA", "SCDown", ) class DFL(nn.Module): """ Integral module of Distribution Focal Loss (DFL). Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391 """ def __init__(self, c1=16): """Initialize a convolutional layer with a given number of input channels.""" super().__init__() self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False) x = torch.arange(c1, dtype=torch.float) self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1)) self.c1 = c1 def forward(self, x): """Applies a transformer layer on input tensor 'x' and returns a tensor.""" b, _, a = x.shape # batch, channels, anchors return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a) # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a) class Proto(nn.Module): """YOLOv8 mask Proto module for segmentation models.""" def __init__(self, c1, c_=256, c2=32): """ Initializes the YOLOv8 mask Proto module with specified number of protos and masks. Input arguments are ch_in, number of protos, number of masks. """ super().__init__() self.cv1 = Conv(c1, c_, k=3) self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest') self.cv2 = Conv(c_, c_, k=3) self.cv3 = Conv(c_, c2) def forward(self, x): """Performs a forward pass through layers using an upsampled input image.""" return self.cv3(self.cv2(self.upsample(self.cv1(x)))) class HGStem(nn.Module): """ StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d. https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py """ def __init__(self, c1, cm, c2): """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling.""" super().__init__() self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU()) self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU()) self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU()) self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU()) self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU()) self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True) def forward(self, x): """Forward pass of a PPHGNetV2 backbone layer.""" x = self.stem1(x) x = F.pad(x, [0, 1, 0, 1]) x2 = self.stem2a(x) x2 = F.pad(x2, [0, 1, 0, 1]) x2 = self.stem2b(x2) x1 = self.pool(x) x = torch.cat([x1, x2], dim=1) x = self.stem3(x) x = self.stem4(x) return x class HGBlock(nn.Module): """ HG_Block of PPHGNetV2 with 2 convolutions and LightConv. https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py """ def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()): """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels.""" super().__init__() block = LightConv if lightconv else Conv self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n)) self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv self.add = shortcut and c1 == c2 def forward(self, x): """Forward pass of a PPHGNetV2 backbone layer.""" y = [x] y.extend(m(y[-1]) for m in self.m) y = self.ec(self.sc(torch.cat(y, 1))) return y + x if self.add else y class SPP(nn.Module): """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729.""" def __init__(self, c1, c2, k=(5, 9, 13)): """Initialize the SPP layer with input/output channels and pooling kernel sizes.""" super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) def forward(self, x): """Forward pass of the SPP layer, performing spatial pyramid pooling.""" x = self.cv1(x) return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) class SPPF(nn.Module): """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher.""" def __init__(self, c1, c2, k=5): """ Initializes the SPPF layer with given input/output channels and kernel size. This module is equivalent to SPP(k=(5, 9, 13)). """ super().__init__() c_ = c1 // 2 # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_ * 4, c2, 1, 1) self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) def forward(self, x): """Forward pass through Ghost Convolution block.""" y = [self.cv1(x)] y.extend(self.m(y[-1]) for _ in range(3)) return self.cv2(torch.cat(y, 1)) class C1(nn.Module): """CSP Bottleneck with 1 convolution.""" def __init__(self, c1, c2, n=1): """Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number.""" super().__init__() self.cv1 = Conv(c1, c2, 1, 1) self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n))) def forward(self, x): """Applies cross-convolutions to input in the C3 module.""" y = self.cv1(x) return self.m(y) + y class C2(nn.Module): """CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): """Initializes a CSP Bottleneck with 2 convolutions and optional shortcut connection.""" super().__init__() self.c = int(c2 * e) # hidden channels self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2) # self.attention = ChannelAttention(2 * self.c) # or SpatialAttention() self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))) def forward(self, x): """Forward pass through the CSP bottleneck with 2 convolutions.""" a, b = self.cv1(x).chunk(2, 1) return self.cv2(torch.cat((self.m(a), b), 1)) class C2f(nn.Module): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing.""" super().__init__() self.c = int(c2 * e) # hidden channels self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2) self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) def forward(self, x): """Forward pass through C2f layer.""" y = list(self.cv1(x).chunk(2, 1)) y.extend(m(y[-1]) for m in self.m) return self.cv2(torch.cat(y, 1)) def forward_split(self, x): """Forward pass using split() instead of chunk().""" y = list(self.cv1(x).split((self.c, self.c), 1)) y.extend(m(y[-1]) for m in self.m) return self.cv2(torch.cat(y, 1)) class C3(nn.Module): """CSP Bottleneck with 3 convolutions.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values.""" super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n))) def forward(self, x): """Forward pass through the CSP bottleneck with 2 convolutions.""" return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) class C3x(C3): """C3 module with cross-convolutions.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): """Initialize C3TR instance and set default parameters.""" super().__init__(c1, c2, n, shortcut, g, e) self.c_ = int(c2 * e) self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n))) class RepC3(nn.Module): """Rep C3.""" def __init__(self, c1, c2, n=3, e=1.0): """Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number.""" super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c2, 1, 1) self.cv2 = Conv(c1, c2, 1, 1) self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)]) self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity() def forward(self, x): """Forward pass of RT-DETR neck layer.""" return self.cv3(self.m(self.cv1(x)) + self.cv2(x)) class C3TR(C3): """C3 module with TransformerBlock().""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): """Initialize C3Ghost module with GhostBottleneck().""" super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) self.m = TransformerBlock(c_, c_, 4, n) class C3Ghost(C3): """C3 module with GhostBottleneck().""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling.""" super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) class GhostBottleneck(nn.Module): """Ghost Bottleneck https://github.com/huawei-noah/ghostnet.""" def __init__(self, c1, c2, k=3, s=1): """Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride.""" super().__init__() c_ = c2 // 2 self.conv = nn.Sequential( GhostConv(c1, c_, 1, 1), # pw DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw GhostConv(c_, c2, 1, 1, act=False), # pw-linear ) self.shortcut = ( nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() ) def forward(self, x): """Applies skip connection and concatenation to input tensor.""" return self.conv(x) + self.shortcut(x) class Bottleneck(nn.Module): """Standard bottleneck.""" def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters.""" super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, k[0], 1) self.cv2 = Conv(c_, c2, k[1], 1, g=g) self.add = shortcut and c1 == c2 def forward(self, x): """Applies the YOLO FPN to input data.""" return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) class BottleneckCSP(nn.Module): """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): """Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion.""" super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) self.cv4 = Conv(2 * c_, c2, 1, 1) self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) self.act = nn.SiLU() self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) def forward(self, x): """Applies a CSP bottleneck with 3 convolutions.""" y1 = self.cv3(self.m(self.cv1(x))) y2 = self.cv2(x) return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) class ResNetBlock(nn.Module): """ResNet block with standard convolution layers.""" def __init__(self, c1, c2, s=1, e=4): """Initialize convolution with given parameters.""" super().__init__() c3 = e * c2 self.cv1 = Conv(c1, c2, k=1, s=1, act=True) self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True) self.cv3 = Conv(c2, c3, k=1, act=False) self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity() def forward(self, x): """Forward pass through the ResNet block.""" return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x)) class ResNetLayer(nn.Module): """ResNet layer with multiple ResNet blocks.""" def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4): """Initializes the ResNetLayer given arguments.""" super().__init__() self.is_first = is_first if self.is_first: self.layer = nn.Sequential( Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) else: blocks = [ResNetBlock(c1, c2, s, e=e)] blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)]) self.layer = nn.Sequential(*blocks) def forward(self, x): """Forward pass through the ResNet layer.""" return self.layer(x) class MaxSigmoidAttnBlock(nn.Module): """Max Sigmoid attention block.""" def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False): """Initializes MaxSigmoidAttnBlock with specified arguments.""" super().__init__() self.nh = nh self.hc = c2 // nh self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None self.gl = nn.Linear(gc, ec) self.bias = nn.Parameter(torch.zeros(nh)) self.proj_conv = Conv(c1, c2, k=3, s=1, act=False) self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0 def forward(self, x, guide): """Forward process.""" bs, _, h, w = x.shape guide = self.gl(guide) guide = guide.view(bs, -1, self.nh, self.hc) embed = self.ec(x) if self.ec is not None else x embed = embed.view(bs, self.nh, self.hc, h, w) aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide) aw = aw.max(dim=-1)[0] aw = aw / (self.hc**0.5) aw = aw + self.bias[None, :, None, None] aw = aw.sigmoid() * self.scale x = self.proj_conv(x) x = x.view(bs, self.nh, -1, h, w) x = x * aw.unsqueeze(2) return x.view(bs, -1, h, w) class C2fAttn(nn.Module): """C2f module with an additional attn module.""" def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5): """Initializes C2f module with attention mechanism for enhanced feature extraction and processing.""" super().__init__() self.c = int(c2 * e) # hidden channels self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv((3 + n) * self.c, c2, 1) # optional act=FReLU(c2) self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh) def forward(self, x, guide): """Forward pass through C2f layer.""" y = list(self.cv1(x).chunk(2, 1)) y.extend(m(y[-1]) for m in self.m) y.append(self.attn(y[-1], guide)) return self.cv2(torch.cat(y, 1)) def forward_split(self, x, guide): """Forward pass using split() instead of chunk().""" y = list(self.cv1(x).split((self.c, self.c), 1)) y.extend(m(y[-1]) for m in self.m) y.append(self.attn(y[-1], guide)) return self.cv2(torch.cat(y, 1)) class ImagePoolingAttn(nn.Module): """ImagePoolingAttn: Enhance the text embeddings with image-aware information.""" def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False): """Initializes ImagePoolingAttn with specified arguments.""" super().__init__() nf = len(ch) self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec)) self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec)) self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec)) self.proj = nn.Linear(ec, ct) self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0 self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch]) self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)]) self.ec = ec self.nh = nh self.nf = nf self.hc = ec // nh self.k = k def forward(self, x, text): """Executes attention mechanism on input tensor x and guide tensor.""" bs = x[0].shape[0] assert len(x) == self.nf num_patches = self.k**2 x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)] x = torch.cat(x, dim=-1).transpose(1, 2) q = self.query(text) k = self.key(x) v = self.value(x) # q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1) q = q.reshape(bs, -1, self.nh, self.hc) k = k.reshape(bs, -1, self.nh, self.hc) v = v.reshape(bs, -1, self.nh, self.hc) aw = torch.einsum("bnmc,bkmc->bmnk", q, k) aw = aw / (self.hc**0.5) aw = F.softmax(aw, dim=-1) x = torch.einsum("bmnk,bkmc->bnmc", aw, v) x = self.proj(x.reshape(bs, -1, self.ec)) return x * self.scale + text class ContrastiveHead(nn.Module): """Implements contrastive learning head for region-text similarity in vision-language models.""" def __init__(self): """Initializes ContrastiveHead with specified region-text similarity parameters.""" super().__init__() # NOTE: use -10.0 to keep the init cls loss consistency with other losses self.bias = nn.Parameter(torch.tensor([-10.0])) self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log()) def forward(self, x, w): """Forward function of contrastive learning.""" x = F.normalize(x, dim=1, p=2) w = F.normalize(w, dim=-1, p=2) x = torch.einsum("bchw,bkc->bkhw", x, w) return x * self.logit_scale.exp() + self.bias class BNContrastiveHead(nn.Module): """ Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization. Args: embed_dims (int): Embed dimensions of text and image features. """ def __init__(self, embed_dims: int): """Initialize ContrastiveHead with region-text similarity parameters.""" super().__init__() self.norm = nn.BatchNorm2d(embed_dims) # NOTE: use -10.0 to keep the init cls loss consistency with other losses self.bias = nn.Parameter(torch.tensor([-10.0])) # use -1.0 is more stable self.logit_scale = nn.Parameter(-1.0 * torch.ones([])) def forward(self, x, w): """Forward function of contrastive learning.""" x = self.norm(x) w = F.normalize(w, dim=-1, p=2) x = torch.einsum("bchw,bkc->bkhw", x, w) return x * self.logit_scale.exp() + self.bias class RepBottleneck(Bottleneck): """Rep bottleneck.""" def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): """Initializes a RepBottleneck module with customizable in/out channels, shortcuts, groups and expansion.""" super().__init__(c1, c2, shortcut, g, k, e) c_ = int(c2 * e) # hidden channels self.cv1 = RepConv(c1, c_, k[0], 1) class RepCSP(C3): """Repeatable Cross Stage Partial Network (RepCSP) module for efficient feature extraction.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): """Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio.""" super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) class RepNCSPELAN4(nn.Module): """CSP-ELAN.""" def __init__(self, c1, c2, c3, c4, n=1): """Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions.""" super().__init__() self.c = c3 // 2 self.cv1 = Conv(c1, c3, 1, 1) self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1)) self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1)) self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1) def forward(self, x): """Forward pass through RepNCSPELAN4 layer.""" y = list(self.cv1(x).chunk(2, 1)) y.extend((m(y[-1])) for m in [self.cv2, self.cv3]) return self.cv4(torch.cat(y, 1)) def forward_split(self, x): """Forward pass using split() instead of chunk().""" y = list(self.cv1(x).split((self.c, self.c), 1)) y.extend(m(y[-1]) for m in [self.cv2, self.cv3]) return self.cv4(torch.cat(y, 1)) class ELAN1(RepNCSPELAN4): """ELAN1 module with 4 convolutions.""" def __init__(self, c1, c2, c3, c4): """Initializes ELAN1 layer with specified channel sizes.""" super().__init__(c1, c2, c3, c4) self.c = c3 // 2 self.cv1 = Conv(c1, c3, 1, 1) self.cv2 = Conv(c3 // 2, c4, 3, 1) self.cv3 = Conv(c4, c4, 3, 1) self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1) class AConv(nn.Module): """AConv.""" def __init__(self, c1, c2): """Initializes AConv module with convolution layers.""" super().__init__() self.cv1 = Conv(c1, c2, 3, 2, 1) def forward(self, x): """Forward pass through AConv layer.""" x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True) return self.cv1(x) class ADown(nn.Module): """ADown.""" def __init__(self, c1, c2): """Initializes ADown module with convolution layers to downsample input from channels c1 to c2.""" super().__init__() self.c = c2 // 2 self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1) self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0) def forward(self, x): """Forward pass through ADown layer.""" x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True) x1, x2 = x.chunk(2, 1) x1 = self.cv1(x1) x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1) x2 = self.cv2(x2) return torch.cat((x1, x2), 1) class SPPELAN(nn.Module): """SPP-ELAN.""" def __init__(self, c1, c2, c3, k=5): """Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling.""" super().__init__() self.c = c3 self.cv1 = Conv(c1, c3, 1, 1) self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) self.cv5 = Conv(4 * c3, c2, 1, 1) def forward(self, x): """Forward pass through SPPELAN layer.""" y = [self.cv1(x)] y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4]) return self.cv5(torch.cat(y, 1)) class CBLinear(nn.Module): """CBLinear.""" def __init__(self, c1, c2s, k=1, s=1, p=None, g=1): """Initializes the CBLinear module, passing inputs unchanged.""" super().__init__() self.c2s = c2s self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True) def forward(self, x): """Forward pass through CBLinear layer.""" return self.conv(x).split(self.c2s, dim=1) class CBFuse(nn.Module): """CBFuse.""" def __init__(self, idx): """Initializes CBFuse module with layer index for selective feature fusion.""" super().__init__() self.idx = idx def forward(self, xs): """Forward pass through CBFuse layer.""" target_size = xs[-1].shape[2:] res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])] return torch.sum(torch.stack(res + xs[-1:]), dim=0) class C3f(nn.Module): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups, expansion. """ super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv((2 + n) * c_, c2, 1) # optional act=FReLU(c2) self.m = nn.ModuleList(Bottleneck(c_, c_, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)) def forward(self, x): """Forward pass through C2f layer.""" y = [self.cv2(x), self.cv1(x)] y.extend(m(y[-1]) for m in self.m) return self.cv3(torch.cat(y, 1)) class C3k2(C2f): """Faster Implementation of CSP Bottleneck with 2 convolutions.""" def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True): """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks.""" super().__init__(c1, c2, n, shortcut, g, e) self.m = nn.ModuleList( C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n) ) class C3k(C3): """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks.""" def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3): """Initializes the C3k module with specified channels, number of layers, and configurations.""" super().__init__(c1, c2, n, shortcut, g, e) c_ = int(c2 * e) # hidden channels # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n))) self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n))) class RepVGGDW(torch.nn.Module): """RepVGGDW is a class that represents a depth wise separable convolutional block in RepVGG architecture.""" def __init__(self, ed) -> None: """Initializes RepVGGDW with depthwise separable convolutional layers for efficient processing.""" super().__init__() self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False) self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False) self.dim = ed self.act = nn.SiLU() def forward(self, x): """ Performs a forward pass of the RepVGGDW block. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after applying the depth wise separable convolution. """ return self.act(self.conv(x) + self.conv1(x)) def forward_fuse(self, x): """ Performs a forward pass of the RepVGGDW block without fusing the convolutions. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor after applying the depth wise separable convolution. """ return self.act(self.conv(x)) @torch.no_grad() def fuse(self): """ Fuses the convolutional layers in the RepVGGDW block. This method fuses the convolutional layers and updates the weights and biases accordingly. """ conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn) conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn) conv_w = conv.weight conv_b = conv.bias conv1_w = conv1.weight conv1_b = conv1.bias conv1_w = torch.nn.functional.pad(conv1_w, [2, 2, 2, 2]) final_conv_w = conv_w + conv1_w final_conv_b = conv_b + conv1_b conv.weight.data.copy_(final_conv_w) conv.bias.data.copy_(final_conv_b) self.conv = conv del self.conv1 class CIB(nn.Module): """ Conditional Identity Block (CIB) module. Args: c1 (int): Number of input channels. c2 (int): Number of output channels. shortcut (bool, optional): Whether to add a shortcut connection. Defaults to True. e (float, optional): Scaling factor for the hidden channels. Defaults to 0.5. lk (bool, optional): Whether to use RepVGGDW for the third convolutional layer. Defaults to False. """ def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False): """Initializes the custom model with optional shortcut, scaling factor, and RepVGGDW layer.""" super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = nn.Sequential( Conv(c1, c1, 3, g=c1), Conv(c1, 2 * c_, 1), RepVGGDW(2 * c_) if lk else Conv(2 * c_, 2 * c_, 3, g=2 * c_), Conv(2 * c_, c2, 1), Conv(c2, c2, 3, g=c2), ) self.add = shortcut and c1 == c2 def forward(self, x): """ Forward pass of the CIB module. Args: x (torch.Tensor): Input tensor. Returns: (torch.Tensor): Output tensor. """ return x + self.cv1(x) if self.add else self.cv1(x) class C2fCIB(C2f): """ C2fCIB class represents a convolutional block with C2f and CIB modules. Args: c1 (int): Number of input channels. c2 (int): Number of output channels. n (int, optional): Number of CIB modules to stack. Defaults to 1. shortcut (bool, optional): Whether to use shortcut connection. Defaults to False. lk (bool, optional): Whether to use local key connection. Defaults to False. g (int, optional): Number of groups for grouped convolution. Defaults to 1. e (float, optional): Expansion ratio for CIB modules. Defaults to 0.5. """ def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5): """Initializes the module with specified parameters for channel, shortcut, local key, groups, and expansion.""" super().__init__(c1, c2, n, shortcut, g, e) self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n)) class Attention(nn.Module): """ Attention module that performs self-attention on the input tensor. Args: dim (int): The input tensor dimension. num_heads (int): The number of attention heads. attn_ratio (float): The ratio of the attention key dimension to the head dimension. Attributes: num_heads (int): The number of attention heads. head_dim (int): The dimension of each attention head. key_dim (int): The dimension of the attention key. scale (float): The scaling factor for the attention scores. qkv (Conv): Convolutional layer for computing the query, key, and value. proj (Conv): Convolutional layer for projecting the attended values. pe (Conv): Convolutional layer for positional encoding. """ def __init__(self, dim, num_heads=8, attn_ratio=0.5): """Initializes multi-head attention module with query, key, and value convolutions and positional encoding.""" super().__init__() self.num_heads = num_heads self.head_dim = dim // num_heads self.key_dim = int(self.head_dim * attn_ratio) self.scale = self.key_dim**-0.5 nh_kd = self.key_dim * num_heads h = dim + nh_kd * 2 self.qkv = Conv(dim, h, 1, act=False) self.proj = Conv(dim, dim, 1, act=False) self.pe = Conv(dim, dim, 3, 1, g=dim, act=False) def forward(self, x): """ Forward pass of the Attention module. Args: x (torch.Tensor): The input tensor. Returns: (torch.Tensor): The output tensor after self-attention. """ B, C, H, W = x.shape N = H * W qkv = self.qkv(x) q, k, v = qkv.view(B, self.num_heads, self.key_dim * 2 + self.head_dim, N).split( [self.key_dim, self.key_dim, self.head_dim], dim=2 ) attn = (q.transpose(-2, -1) @ k) * self.scale attn = attn.softmax(dim=-1) x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W)) x = self.proj(x) return x class PSABlock(nn.Module): """ PSABlock class implementing a Position-Sensitive Attention block for neural networks. This class encapsulates the functionality for applying multi-head attention and feed-forward neural network layers with optional shortcut connections. Attributes: attn (Attention): Multi-head attention module. ffn (nn.Sequential): Feed-forward neural network module. add (bool): Flag indicating whether to add shortcut connections. Methods: forward: Performs a forward pass through the PSABlock, applying attention and feed-forward layers. Examples: Create a PSABlock and perform a forward pass >>> psablock = PSABlock(c=128, attn_ratio=0.5, num_heads=4, shortcut=True) >>> input_tensor = torch.randn(1, 128, 32, 32) >>> output_tensor = psablock(input_tensor) """ def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None: """Initializes the PSABlock with attention and feed-forward layers for enhanced feature extraction.""" super().__init__() self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads) self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False)) self.add = shortcut def forward(self, x): """Executes a forward pass through PSABlock, applying attention and feed-forward layers to the input tensor.""" x = x + self.attn(x) if self.add else self.attn(x) x = x + self.ffn(x) if self.add else self.ffn(x) return x class PSA(nn.Module): """ PSA class for implementing Position-Sensitive Attention in neural networks. This class encapsulates the functionality for applying position-sensitive attention and feed-forward networks to input tensors, enhancing feature extraction and processing capabilities. Attributes: c (int): Number of hidden channels after applying the initial convolution. cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. attn (Attention): Attention module for position-sensitive attention. ffn (nn.Sequential): Feed-forward network for further processing. Methods: forward: Applies position-sensitive attention and feed-forward network to the input tensor. Examples: Create a PSA module and apply it to an input tensor >>> psa = PSA(c1=128, c2=128, e=0.5) >>> input_tensor = torch.randn(1, 128, 64, 64) >>> output_tensor = psa.forward(input_tensor) """ def __init__(self, c1, c2, e=0.5): """Initializes the PSA module with input/output channels and attention mechanism for feature extraction.""" super().__init__() assert c1 == c2 self.c = int(c1 * e) self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv(2 * self.c, c1, 1) self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64) self.ffn = nn.Sequential(Conv(self.c, self.c * 2, 1), Conv(self.c * 2, self.c, 1, act=False)) def forward(self, x): """Executes forward pass in PSA module, applying attention and feed-forward layers to the input tensor.""" a, b = self.cv1(x).split((self.c, self.c), dim=1) b = b + self.attn(b) b = b + self.ffn(b) return self.cv2(torch.cat((a, b), 1)) class C2PSA(nn.Module): """ C2PSA module with attention mechanism for enhanced feature extraction and processing. This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations. Attributes: c (int): Number of hidden channels. cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations. Methods: forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations. Notes: This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules. Examples: >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5) >>> input_tensor = torch.randn(1, 256, 64, 64) >>> output_tensor = c2psa(input_tensor) """ def __init__(self, c1, c2, n=1, e=0.5): """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio.""" super().__init__() assert c1 == c2 self.c = int(c1 * e) self.cv1 = Conv(c1, 2 * self.c, 1, 1) self.cv2 = Conv(2 * self.c, c1, 1) self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n))) def forward(self, x): """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor.""" a, b = self.cv1(x).split((self.c, self.c), dim=1) b = self.m(b) return self.cv2(torch.cat((a, b), 1)) class C2fPSA(C2f): """ C2fPSA module with enhanced feature extraction using PSA blocks. This class extends the C2f module by incorporating PSA blocks for improved attention mechanisms and feature extraction. Attributes: c (int): Number of hidden channels. cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c. cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c. m (nn.ModuleList): List of PSA blocks for feature extraction. Methods: forward: Performs a forward pass through the C2fPSA module. forward_split: Performs a forward pass using split() instead of chunk(). Examples: >>> import torch >>> from ultralytics.models.common import C2fPSA >>> model = C2fPSA(c1=64, c2=64, n=3, e=0.5) >>> x = torch.randn(1, 64, 128, 128) >>> output = model(x) >>> print(output.shape) """ def __init__(self, c1, c2, n=1, e=0.5): """Initializes the C2fPSA module, a variant of C2f with PSA blocks for enhanced feature extraction.""" assert c1 == c2 super().__init__(c1, c2, n=n, e=e) self.m = nn.ModuleList(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)) class SCDown(nn.Module): """ SCDown module for downsampling with separable convolutions. This module performs downsampling using a combination of pointwise and depthwise convolutions, which helps in efficiently reducing the spatial dimensions of the input tensor while maintaining the channel information. Attributes: cv1 (Conv): Pointwise convolution layer that reduces the number of channels. cv2 (Conv): Depthwise convolution layer that performs spatial downsampling. Methods: forward: Applies the SCDown module to the input tensor. Examples: >>> import torch >>> from ultralytics import SCDown >>> model = SCDown(c1=64, c2=128, k=3, s=2) >>> x = torch.randn(1, 64, 128, 128) >>> y = model(x) >>> print(y.shape) torch.Size([1, 128, 64, 64]) """ def __init__(self, c1, c2, k, s): """Initializes the SCDown module with specified input/output channels, kernel size, and stride.""" super().__init__() self.cv1 = Conv(c1, c2, 1, 1) self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False) def forward(self, x): """Applies convolution and downsampling to the input tensor in the SCDown module.""" return self.cv2(self.cv1(x))