# Ultralytics YOLO 🚀, AGPL-3.0 license from multiprocessing.pool import ThreadPool from pathlib import Path import numpy as np import torch import torch.nn.functional as F from ultralytics.models.yolo.detect import DetectionValidator from ultralytics.utils import LOGGER, NUM_THREADS, ops from ultralytics.utils.checks import check_requirements from ultralytics.utils.metrics import SegmentMetrics, box_iou, mask_iou from ultralytics.utils.plotting import output_to_target, plot_images class SegmentationValidator(DetectionValidator): """ A class extending the DetectionValidator class for validation based on a segmentation model. Example: ```python from ultralytics.models.yolo.segment import SegmentationValidator args = dict(model="yolov8n-seg.pt", data="coco8-seg.yaml") validator = SegmentationValidator(args=args) validator() ``` """ def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): """Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics.""" super().__init__(dataloader, save_dir, pbar, args, _callbacks) self.plot_masks = None self.process = None self.args.task = "segment" self.metrics = SegmentMetrics(save_dir=self.save_dir, on_plot=self.on_plot) def preprocess(self, batch): """Preprocesses batch by converting masks to float and sending to device.""" batch = super().preprocess(batch) batch["masks"] = batch["masks"].to(self.device).float() return batch def init_metrics(self, model): """Initialize metrics and select mask processing function based on save_json flag.""" super().init_metrics(model) self.plot_masks = [] if self.args.save_json: check_requirements("pycocotools>=2.0.6") # more accurate vs faster self.process = ops.process_mask_native if self.args.save_json or self.args.save_txt else ops.process_mask self.stats = dict(tp_m=[], tp=[], conf=[], pred_cls=[], target_cls=[], target_img=[]) def get_desc(self): """Return a formatted description of evaluation metrics.""" return ("%22s" + "%11s" * 10) % ( "Class", "Images", "Instances", "Box(P", "R", "mAP50", "mAP50-95)", "Mask(P", "R", "mAP50", "mAP50-95)", ) def postprocess(self, preds): """Post-processes YOLO predictions and returns output detections with proto.""" p = ops.non_max_suppression( preds[0], self.args.conf, self.args.iou, labels=self.lb, multi_label=True, agnostic=self.args.single_cls or self.args.agnostic_nms, max_det=self.args.max_det, nc=self.nc, ) proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported return p, proto def _prepare_batch(self, si, batch): """Prepares a batch for training or inference by processing images and targets.""" prepared_batch = super()._prepare_batch(si, batch) midx = [si] if self.args.overlap_mask else batch["batch_idx"] == si prepared_batch["masks"] = batch["masks"][midx] return prepared_batch def _prepare_pred(self, pred, pbatch, proto): """Prepares a batch for training or inference by processing images and targets.""" predn = super()._prepare_pred(pred, pbatch) pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=pbatch["imgsz"]) return predn, pred_masks def update_metrics(self, preds, batch): """Metrics.""" for si, (pred, proto) in enumerate(zip(preds[0], preds[1])): self.seen += 1 npr = len(pred) stat = dict( conf=torch.zeros(0, device=self.device), pred_cls=torch.zeros(0, device=self.device), tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), tp_m=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device), ) pbatch = self._prepare_batch(si, batch) cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox") nl = len(cls) stat["target_cls"] = cls stat["target_img"] = cls.unique() if npr == 0: if nl: for k in self.stats.keys(): self.stats[k].append(stat[k]) if self.args.plots: self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls) continue # Masks gt_masks = pbatch.pop("masks") # Predictions if self.args.single_cls: pred[:, 5] = 0 predn, pred_masks = self._prepare_pred(pred, pbatch, proto) stat["conf"] = predn[:, 4] stat["pred_cls"] = predn[:, 5] # Evaluate if nl: stat["tp"] = self._process_batch(predn, bbox, cls) stat["tp_m"] = self._process_batch( predn, bbox, cls, pred_masks, gt_masks, self.args.overlap_mask, masks=True ) if self.args.plots: self.confusion_matrix.process_batch(predn, bbox, cls) for k in self.stats.keys(): self.stats[k].append(stat[k]) pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8) if self.args.plots and self.batch_i < 3: self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot # Save if self.args.save_json: self.pred_to_json( predn, batch["im_file"][si], ops.scale_image( pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(), pbatch["ori_shape"], ratio_pad=batch["ratio_pad"][si], ), ) if self.args.save_txt: self.save_one_txt( predn, pred_masks, self.args.save_conf, pbatch["ori_shape"], self.save_dir / "labels" / f'{Path(batch["im_file"][si]).stem}.txt', ) def finalize_metrics(self, *args, **kwargs): """Sets speed and confusion matrix for evaluation metrics.""" self.metrics.speed = self.speed self.metrics.confusion_matrix = self.confusion_matrix def _process_batch(self, detections, gt_bboxes, gt_cls, pred_masks=None, gt_masks=None, overlap=False, masks=False): """ Compute correct prediction matrix for a batch based on bounding boxes and optional masks. Args: detections (torch.Tensor): Tensor of shape (N, 6) representing detected bounding boxes and associated confidence scores and class indices. Each row is of the format [x1, y1, x2, y2, conf, class]. gt_bboxes (torch.Tensor): Tensor of shape (M, 4) representing ground truth bounding box coordinates. Each row is of the format [x1, y1, x2, y2]. gt_cls (torch.Tensor): Tensor of shape (M,) representing ground truth class indices. pred_masks (torch.Tensor | None): Tensor representing predicted masks, if available. The shape should match the ground truth masks. gt_masks (torch.Tensor | None): Tensor of shape (M, H, W) representing ground truth masks, if available. overlap (bool): Flag indicating if overlapping masks should be considered. masks (bool): Flag indicating if the batch contains mask data. Returns: (torch.Tensor): A correct prediction matrix of shape (N, 10), where 10 represents different IoU levels. Note: - If `masks` is True, the function computes IoU between predicted and ground truth masks. - If `overlap` is True and `masks` is True, overlapping masks are taken into account when computing IoU. Example: ```python detections = torch.tensor([[25, 30, 200, 300, 0.8, 1], [50, 60, 180, 290, 0.75, 0]]) gt_bboxes = torch.tensor([[24, 29, 199, 299], [55, 65, 185, 295]]) gt_cls = torch.tensor([1, 0]) correct_preds = validator._process_batch(detections, gt_bboxes, gt_cls) ``` """ if masks: if overlap: nl = len(gt_cls) index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1 gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640) gt_masks = torch.where(gt_masks == index, 1.0, 0.0) if gt_masks.shape[1:] != pred_masks.shape[1:]: gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode="bilinear", align_corners=False)[0] gt_masks = gt_masks.gt_(0.5) iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1)) else: # boxes iou = box_iou(gt_bboxes, detections[:, :4]) return self.match_predictions(detections[:, 5], gt_cls, iou) def plot_val_samples(self, batch, ni): """Plots validation samples with bounding box labels.""" plot_images( batch["img"], batch["batch_idx"], batch["cls"].squeeze(-1), batch["bboxes"], masks=batch["masks"], paths=batch["im_file"], fname=self.save_dir / f"val_batch{ni}_labels.jpg", names=self.names, on_plot=self.on_plot, ) def plot_predictions(self, batch, preds, ni): """Plots batch predictions with masks and bounding boxes.""" plot_images( batch["img"], *output_to_target(preds[0], max_det=15), # not set to self.args.max_det due to slow plotting speed torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks, paths=batch["im_file"], fname=self.save_dir / f"val_batch{ni}_pred.jpg", names=self.names, on_plot=self.on_plot, ) # pred self.plot_masks.clear() def save_one_txt(self, predn, pred_masks, save_conf, shape, file): """Save YOLO detections to a txt file in normalized coordinates in a specific format.""" from ultralytics.engine.results import Results Results( np.zeros((shape[0], shape[1]), dtype=np.uint8), path=None, names=self.names, boxes=predn[:, :6], masks=pred_masks, ).save_txt(file, save_conf=save_conf) def pred_to_json(self, predn, filename, pred_masks): """ Save one JSON result. Examples: >>> result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} """ from pycocotools.mask import encode # noqa def single_encode(x): """Encode predicted masks as RLE and append results to jdict.""" rle = encode(np.asarray(x[:, :, None], order="F", dtype="uint8"))[0] rle["counts"] = rle["counts"].decode("utf-8") return rle stem = Path(filename).stem image_id = int(stem) if stem.isnumeric() else stem box = ops.xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner pred_masks = np.transpose(pred_masks, (2, 0, 1)) with ThreadPool(NUM_THREADS) as pool: rles = pool.map(single_encode, pred_masks) for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())): self.jdict.append( { "image_id": image_id, "category_id": self.class_map[int(p[5])], "bbox": [round(x, 3) for x in b], "score": round(p[4], 5), "segmentation": rles[i], } ) def eval_json(self, stats): """Return COCO-style object detection evaluation metrics.""" if self.args.save_json and self.is_coco and len(self.jdict): anno_json = self.data["path"] / "annotations/instances_val2017.json" # annotations pred_json = self.save_dir / "predictions.json" # predictions LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...") try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb check_requirements("pycocotools>=2.0.6") from pycocotools.coco import COCO # noqa from pycocotools.cocoeval import COCOeval # noqa for x in anno_json, pred_json: assert x.is_file(), f"{x} file not found" anno = COCO(str(anno_json)) # init annotations api pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path) for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "segm")]): if self.is_coco: eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval eval.evaluate() eval.accumulate() eval.summarize() idx = i * 4 + 2 stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[ :2 ] # update mAP50-95 and mAP50 except Exception as e: LOGGER.warning(f"pycocotools unable to run: {e}") return stats