# Ultralytics YOLO 🚀, AGPL-3.0 license from pathlib import Path from ultralytics.engine.model import Model from .predict import FastSAMPredictor from .val import FastSAMValidator class FastSAM(Model): """ FastSAM model interface. Example: ```python from ultralytics import FastSAM model = FastSAM("last.pt") results = model.predict("ultralytics/assets/bus.jpg") ``` """ def __init__(self, model="FastSAM-x.pt"): """Call the __init__ method of the parent class (YOLO) with the updated default model.""" if str(model) == "FastSAM.pt": model = "FastSAM-x.pt" assert Path(model).suffix not in {".yaml", ".yml"}, "FastSAM models only support pre-trained models." super().__init__(model=model, task="segment") def predict(self, source, stream=False, bboxes=None, points=None, labels=None, texts=None, **kwargs): """ Perform segmentation prediction on image or video source. Supports prompted segmentation with bounding boxes, points, labels, and texts. Args: source (str | PIL.Image | numpy.ndarray): Input source. stream (bool): Enable real-time streaming. bboxes (list): Bounding box coordinates for prompted segmentation. points (list): Points for prompted segmentation. labels (list): Labels for prompted segmentation. texts (list): Texts for prompted segmentation. **kwargs (Any): Additional keyword arguments. Returns: (list): Model predictions. """ prompts = dict(bboxes=bboxes, points=points, labels=labels, texts=texts) return super().predict(source, stream, prompts=prompts, **kwargs) @property def task_map(self): """Returns a dictionary mapping segment task to corresponding predictor and validator classes.""" return {"segment": {"predictor": FastSAMPredictor, "validator": FastSAMValidator}}