# Ultralytics YOLO 🚀, AGPL-3.0 license import json import random import shutil from collections import defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed from pathlib import Path import cv2 import numpy as np from PIL import Image from ultralytics.utils import DATASETS_DIR, LOGGER, NUM_THREADS, TQDM from ultralytics.utils.downloads import download from ultralytics.utils.files import increment_path def coco91_to_coco80_class(): """ Converts 91-index COCO class IDs to 80-index COCO class IDs. Returns: (list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the corresponding 91-index class ID. """ return [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None, None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, None, 73, 74, 75, 76, 77, 78, 79, None, ] def coco80_to_coco91_class(): r""" Converts 80-index (val2014) to 91-index (paper). For details see https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/. Example: ```python import numpy as np a = np.loadtxt("data/coco.names", dtype="str", delimiter="\n") b = np.loadtxt("data/coco_paper.names", dtype="str", delimiter="\n") x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet ``` """ return [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, ] def convert_coco( labels_dir="../coco/annotations/", save_dir="coco_converted/", use_segments=False, use_keypoints=False, cls91to80=True, lvis=False, ): """ Converts COCO dataset annotations to a YOLO annotation format suitable for training YOLO models. Args: labels_dir (str, optional): Path to directory containing COCO dataset annotation files. save_dir (str, optional): Path to directory to save results to. use_segments (bool, optional): Whether to include segmentation masks in the output. use_keypoints (bool, optional): Whether to include keypoint annotations in the output. cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs. lvis (bool, optional): Whether to convert data in lvis dataset way. Example: ```python from ultralytics.data.converter import convert_coco convert_coco("../datasets/coco/annotations/", use_segments=True, use_keypoints=False, cls91to80=True) convert_coco("../datasets/lvis/annotations/", use_segments=True, use_keypoints=False, cls91to80=False, lvis=True) ``` Output: Generates output files in the specified output directory. """ # Create dataset directory save_dir = increment_path(save_dir) # increment if save directory already exists for p in save_dir / "labels", save_dir / "images": p.mkdir(parents=True, exist_ok=True) # make dir # Convert classes coco80 = coco91_to_coco80_class() # Import json for json_file in sorted(Path(labels_dir).resolve().glob("*.json")): lname = "" if lvis else json_file.stem.replace("instances_", "") fn = Path(save_dir) / "labels" / lname # folder name fn.mkdir(parents=True, exist_ok=True) if lvis: # NOTE: create folders for both train and val in advance, # since LVIS val set contains images from COCO 2017 train in addition to the COCO 2017 val split. (fn / "train2017").mkdir(parents=True, exist_ok=True) (fn / "val2017").mkdir(parents=True, exist_ok=True) with open(json_file) as f: data = json.load(f) # Create image dict images = {f'{x["id"]:d}': x for x in data["images"]} # Create image-annotations dict imgToAnns = defaultdict(list) for ann in data["annotations"]: imgToAnns[ann["image_id"]].append(ann) image_txt = [] # Write labels file for img_id, anns in TQDM(imgToAnns.items(), desc=f"Annotations {json_file}"): img = images[f"{img_id:d}"] h, w = img["height"], img["width"] f = str(Path(img["coco_url"]).relative_to("http://images.cocodataset.org")) if lvis else img["file_name"] if lvis: image_txt.append(str(Path("./images") / f)) bboxes = [] segments = [] keypoints = [] for ann in anns: if ann.get("iscrowd", False): continue # The COCO box format is [top left x, top left y, width, height] box = np.array(ann["bbox"], dtype=np.float64) box[:2] += box[2:] / 2 # xy top-left corner to center box[[0, 2]] /= w # normalize x box[[1, 3]] /= h # normalize y if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0 continue cls = coco80[ann["category_id"] - 1] if cls91to80 else ann["category_id"] - 1 # class box = [cls] + box.tolist() if box not in bboxes: bboxes.append(box) if use_segments and ann.get("segmentation") is not None: if len(ann["segmentation"]) == 0: segments.append([]) continue elif len(ann["segmentation"]) > 1: s = merge_multi_segment(ann["segmentation"]) s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist() else: s = [j for i in ann["segmentation"] for j in i] # all segments concatenated s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist() s = [cls] + s segments.append(s) if use_keypoints and ann.get("keypoints") is not None: keypoints.append( box + (np.array(ann["keypoints"]).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist() ) # Write with open((fn / f).with_suffix(".txt"), "a") as file: for i in range(len(bboxes)): if use_keypoints: line = (*(keypoints[i]),) # cls, box, keypoints else: line = ( *(segments[i] if use_segments and len(segments[i]) > 0 else bboxes[i]), ) # cls, box or segments file.write(("%g " * len(line)).rstrip() % line + "\n") if lvis: with open((Path(save_dir) / json_file.name.replace("lvis_v1_", "").replace(".json", ".txt")), "a") as f: f.writelines(f"{line}\n" for line in image_txt) LOGGER.info(f"{'LVIS' if lvis else 'COCO'} data converted successfully.\nResults saved to {save_dir.resolve()}") def convert_segment_masks_to_yolo_seg(masks_dir, output_dir, classes): """ Converts a dataset of segmentation mask images to the YOLO segmentation format. This function takes the directory containing the binary format mask images and converts them into YOLO segmentation format. The converted masks are saved in the specified output directory. Args: masks_dir (str): The path to the directory where all mask images (png, jpg) are stored. output_dir (str): The path to the directory where the converted YOLO segmentation masks will be stored. classes (int): Total classes in the dataset i.e. for COCO classes=80 Example: ```python from ultralytics.data.converter import convert_segment_masks_to_yolo_seg # The classes here is the total classes in the dataset, for COCO dataset we have 80 classes convert_segment_masks_to_yolo_seg("path/to/masks_directory", "path/to/output/directory", classes=80) ``` Notes: The expected directory structure for the masks is: - masks ├─ mask_image_01.png or mask_image_01.jpg ├─ mask_image_02.png or mask_image_02.jpg ├─ mask_image_03.png or mask_image_03.jpg └─ mask_image_04.png or mask_image_04.jpg After execution, the labels will be organized in the following structure: - output_dir ├─ mask_yolo_01.txt ├─ mask_yolo_02.txt ├─ mask_yolo_03.txt └─ mask_yolo_04.txt """ pixel_to_class_mapping = {i + 1: i for i in range(classes)} for mask_path in Path(masks_dir).iterdir(): if mask_path.suffix == ".png": mask = cv2.imread(str(mask_path), cv2.IMREAD_GRAYSCALE) # Read the mask image in grayscale img_height, img_width = mask.shape # Get image dimensions LOGGER.info(f"Processing {mask_path} imgsz = {img_height} x {img_width}") unique_values = np.unique(mask) # Get unique pixel values representing different classes yolo_format_data = [] for value in unique_values: if value == 0: continue # Skip background class_index = pixel_to_class_mapping.get(value, -1) if class_index == -1: LOGGER.warning(f"Unknown class for pixel value {value} in file {mask_path}, skipping.") continue # Create a binary mask for the current class and find contours contours, _ = cv2.findContours( (mask == value).astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) # Find contours for contour in contours: if len(contour) >= 3: # YOLO requires at least 3 points for a valid segmentation contour = contour.squeeze() # Remove single-dimensional entries yolo_format = [class_index] for point in contour: # Normalize the coordinates yolo_format.append(round(point[0] / img_width, 6)) # Rounding to 6 decimal places yolo_format.append(round(point[1] / img_height, 6)) yolo_format_data.append(yolo_format) # Save Ultralytics YOLO format data to file output_path = Path(output_dir) / f"{mask_path.stem}.txt" with open(output_path, "w") as file: for item in yolo_format_data: line = " ".join(map(str, item)) file.write(line + "\n") LOGGER.info(f"Processed and stored at {output_path} imgsz = {img_height} x {img_width}") def convert_dota_to_yolo_obb(dota_root_path: str): """ Converts DOTA dataset annotations to YOLO OBB (Oriented Bounding Box) format. The function processes images in the 'train' and 'val' folders of the DOTA dataset. For each image, it reads the associated label from the original labels directory and writes new labels in YOLO OBB format to a new directory. Args: dota_root_path (str): The root directory path of the DOTA dataset. Example: ```python from ultralytics.data.converter import convert_dota_to_yolo_obb convert_dota_to_yolo_obb("path/to/DOTA") ``` Notes: The directory structure assumed for the DOTA dataset: - DOTA ├─ images │ ├─ train │ └─ val └─ labels ├─ train_original └─ val_original After execution, the function will organize the labels into: - DOTA └─ labels ├─ train └─ val """ dota_root_path = Path(dota_root_path) # Class names to indices mapping class_mapping = { "plane": 0, "ship": 1, "storage-tank": 2, "baseball-diamond": 3, "tennis-court": 4, "basketball-court": 5, "ground-track-field": 6, "harbor": 7, "bridge": 8, "large-vehicle": 9, "small-vehicle": 10, "helicopter": 11, "roundabout": 12, "soccer-ball-field": 13, "swimming-pool": 14, "container-crane": 15, "airport": 16, "helipad": 17, } def convert_label(image_name, image_width, image_height, orig_label_dir, save_dir): """Converts a single image's DOTA annotation to YOLO OBB format and saves it to a specified directory.""" orig_label_path = orig_label_dir / f"{image_name}.txt" save_path = save_dir / f"{image_name}.txt" with orig_label_path.open("r") as f, save_path.open("w") as g: lines = f.readlines() for line in lines: parts = line.strip().split() if len(parts) < 9: continue class_name = parts[8] class_idx = class_mapping[class_name] coords = [float(p) for p in parts[:8]] normalized_coords = [ coords[i] / image_width if i % 2 == 0 else coords[i] / image_height for i in range(8) ] formatted_coords = [f"{coord:.6g}" for coord in normalized_coords] g.write(f"{class_idx} {' '.join(formatted_coords)}\n") for phase in ["train", "val"]: image_dir = dota_root_path / "images" / phase orig_label_dir = dota_root_path / "labels" / f"{phase}_original" save_dir = dota_root_path / "labels" / phase save_dir.mkdir(parents=True, exist_ok=True) image_paths = list(image_dir.iterdir()) for image_path in TQDM(image_paths, desc=f"Processing {phase} images"): if image_path.suffix != ".png": continue image_name_without_ext = image_path.stem img = cv2.imread(str(image_path)) h, w = img.shape[:2] convert_label(image_name_without_ext, w, h, orig_label_dir, save_dir) def min_index(arr1, arr2): """ Find a pair of indexes with the shortest distance between two arrays of 2D points. Args: arr1 (np.ndarray): A NumPy array of shape (N, 2) representing N 2D points. arr2 (np.ndarray): A NumPy array of shape (M, 2) representing M 2D points. Returns: (tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively. """ dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) return np.unravel_index(np.argmin(dis, axis=None), dis.shape) def merge_multi_segment(segments): """ Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment. This function connects these coordinates with a thin line to merge all segments into one. Args: segments (List[List]): Original segmentations in COCO's JSON file. Each element is a list of coordinates, like [segmentation1, segmentation2,...]. Returns: s (List[np.ndarray]): A list of connected segments represented as NumPy arrays. """ s = [] segments = [np.array(i).reshape(-1, 2) for i in segments] idx_list = [[] for _ in range(len(segments))] # Record the indexes with min distance between each segment for i in range(1, len(segments)): idx1, idx2 = min_index(segments[i - 1], segments[i]) idx_list[i - 1].append(idx1) idx_list[i].append(idx2) # Use two round to connect all the segments for k in range(2): # Forward connection if k == 0: for i, idx in enumerate(idx_list): # Middle segments have two indexes, reverse the index of middle segments if len(idx) == 2 and idx[0] > idx[1]: idx = idx[::-1] segments[i] = segments[i][::-1, :] segments[i] = np.roll(segments[i], -idx[0], axis=0) segments[i] = np.concatenate([segments[i], segments[i][:1]]) # Deal with the first segment and the last one if i in {0, len(idx_list) - 1}: s.append(segments[i]) else: idx = [0, idx[1] - idx[0]] s.append(segments[i][idx[0] : idx[1] + 1]) else: for i in range(len(idx_list) - 1, -1, -1): if i not in {0, len(idx_list) - 1}: idx = idx_list[i] nidx = abs(idx[1] - idx[0]) s.append(segments[i][nidx:]) return s def yolo_bbox2segment(im_dir, save_dir=None, sam_model="sam_b.pt"): """ Converts existing object detection dataset (bounding boxes) to segmentation dataset or oriented bounding box (OBB) in YOLO format. Generates segmentation data using SAM auto-annotator as needed. Args: im_dir (str | Path): Path to image directory to convert. save_dir (str | Path): Path to save the generated labels, labels will be saved into `labels-segment` in the same directory level of `im_dir` if save_dir is None. Default: None. sam_model (str): Segmentation model to use for intermediate segmentation data; optional. Notes: The input directory structure assumed for dataset: - im_dir ├─ 001.jpg ├─ ... └─ NNN.jpg - labels ├─ 001.txt ├─ ... └─ NNN.txt """ from ultralytics import SAM from ultralytics.data import YOLODataset from ultralytics.utils import LOGGER from ultralytics.utils.ops import xywh2xyxy # NOTE: add placeholder to pass class index check dataset = YOLODataset(im_dir, data=dict(names=list(range(1000)))) if len(dataset.labels[0]["segments"]) > 0: # if it's segment data LOGGER.info("Segmentation labels detected, no need to generate new ones!") return LOGGER.info("Detection labels detected, generating segment labels by SAM model!") sam_model = SAM(sam_model) for label in TQDM(dataset.labels, total=len(dataset.labels), desc="Generating segment labels"): h, w = label["shape"] boxes = label["bboxes"] if len(boxes) == 0: # skip empty labels continue boxes[:, [0, 2]] *= w boxes[:, [1, 3]] *= h im = cv2.imread(label["im_file"]) sam_results = sam_model(im, bboxes=xywh2xyxy(boxes), verbose=False, save=False) label["segments"] = sam_results[0].masks.xyn save_dir = Path(save_dir) if save_dir else Path(im_dir).parent / "labels-segment" save_dir.mkdir(parents=True, exist_ok=True) for label in dataset.labels: texts = [] lb_name = Path(label["im_file"]).with_suffix(".txt").name txt_file = save_dir / lb_name cls = label["cls"] for i, s in enumerate(label["segments"]): line = (int(cls[i]), *s.reshape(-1)) texts.append(("%g " * len(line)).rstrip() % line) if texts: with open(txt_file, "a") as f: f.writelines(text + "\n" for text in texts) LOGGER.info(f"Generated segment labels saved in {save_dir}") def create_synthetic_coco_dataset(): """ Creates a synthetic COCO dataset with random images based on filenames from label lists. This function downloads COCO labels, reads image filenames from label list files, creates synthetic images for train2017 and val2017 subsets, and organizes them in the COCO dataset structure. It uses multithreading to generate images efficiently. Examples: >>> from ultralytics.data.converter import create_synthetic_coco_dataset >>> create_synthetic_coco_dataset() Notes: - Requires internet connection to download label files. - Generates random RGB images of varying sizes (480x480 to 640x640 pixels). - Existing test2017 directory is removed as it's not needed. - Reads image filenames from train2017.txt and val2017.txt files. """ def create_synthetic_image(image_file): """Generates synthetic images with random sizes and colors for dataset augmentation or testing purposes.""" if not image_file.exists(): size = (random.randint(480, 640), random.randint(480, 640)) Image.new( "RGB", size=size, color=(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)), ).save(image_file) # Download labels dir = DATASETS_DIR / "coco" url = "https://github.com/ultralytics/assets/releases/download/v0.0.0/" label_zip = "coco2017labels-segments.zip" download([url + label_zip], dir=dir.parent) # Create synthetic images shutil.rmtree(dir / "labels" / "test2017", ignore_errors=True) # Remove test2017 directory as not needed with ThreadPoolExecutor(max_workers=NUM_THREADS) as executor: for subset in ["train2017", "val2017"]: subset_dir = dir / "images" / subset subset_dir.mkdir(parents=True, exist_ok=True) # Read image filenames from label list file label_list_file = dir / f"{subset}.txt" if label_list_file.exists(): with open(label_list_file) as f: image_files = [dir / line.strip() for line in f] # Submit all tasks futures = [executor.submit(create_synthetic_image, image_file) for image_file in image_files] for _ in TQDM(as_completed(futures), total=len(futures), desc=f"Generating images for {subset}"): pass # The actual work is done in the background else: print(f"Warning: Labels file {label_list_file} does not exist. Skipping image creation for {subset}.") print("Synthetic COCO dataset created successfully.")