# Ultralytics YOLO 🚀, AGPL-3.0 license from pathlib import Path from ultralytics import SAM, YOLO def auto_annotate(data, det_model="yolov8x.pt", sam_model="sam_b.pt", device="", output_dir=None): """ Automatically annotates images using a YOLO object detection model and a SAM segmentation model. This function processes images in a specified directory, detects objects using a YOLO model, and then generates segmentation masks using a SAM model. The resulting annotations are saved as text files. Args: data (str): Path to a folder containing images to be annotated. det_model (str): Path or name of the pre-trained YOLO detection model. sam_model (str): Path or name of the pre-trained SAM segmentation model. device (str): Device to run the models on (e.g., 'cpu', 'cuda', '0'). output_dir (str | None): Directory to save the annotated results. If None, a default directory is created. Examples: >>> from ultralytics.data.annotator import auto_annotate >>> auto_annotate(data="ultralytics/assets", det_model="yolo11n.pt", sam_model="mobile_sam.pt") Notes: - The function creates a new directory for output if not specified. - Annotation results are saved as text files with the same names as the input images. - Each line in the output text file represents a detected object with its class ID and segmentation points. """ det_model = YOLO(det_model) sam_model = SAM(sam_model) data = Path(data) if not output_dir: output_dir = data.parent / f"{data.stem}_auto_annotate_labels" Path(output_dir).mkdir(exist_ok=True, parents=True) det_results = det_model(data, stream=True, device=device) for result in det_results: class_ids = result.boxes.cls.int().tolist() # noqa if len(class_ids): boxes = result.boxes.xyxy # Boxes object for bbox outputs sam_results = sam_model(result.orig_img, bboxes=boxes, verbose=False, save=False, device=device) segments = sam_results[0].masks.xyn # noqa with open(f"{Path(output_dir) / Path(result.path).stem}.txt", "w") as f: for i in range(len(segments)): s = segments[i] if len(s) == 0: continue segment = map(str, segments[i].reshape(-1).tolist()) f.write(f"{class_ids[i]} " + " ".join(segment) + "\n")