# Ultralytics YOLO 🚀, AGPL-3.0 license # COCO 2017 dataset https://cocodataset.org by Microsoft # Documentation: https://docs.ultralytics.com/datasets/pose/coco/ # Example usage: yolo train data=coco-pose.yaml # parent # ├── ultralytics # └── datasets # └── coco-pose ← downloads here (20.1 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/coco-pose # dataset root dir train: train2017.txt # train images (relative to 'path') 118287 images val: val2017.txt # val images (relative to 'path') 5000 images test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794 # Keypoints kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible) flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] # Classes names: 0: person # Download script/URL (optional) download: | from ultralytics.utils.downloads import download from pathlib import Path # Download labels dir = Path(yaml['path']) # dataset root dir url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/' urls = [url + 'coco2017labels-pose.zip'] # labels download(urls, dir=dir.parent) # Download data urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional) download(urls, dir=dir / 'images', threads=3)