# Ultralytics YOLO 🚀, AGPL-3.0 license # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford # Documentation: # Documentation: https://docs.ultralytics.com/datasets/detect/voc/ # Example usage: yolo train data=VOC.yaml # parent # ├── ultralytics # └── datasets # └── VOC ← downloads here (2.8 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/VOC train: # train images (relative to 'path') 16551 images - images/train2012 - images/train2007 - images/val2012 - images/val2007 val: # val images (relative to 'path') 4952 images - images/test2007 test: # test images (optional) - images/test2007 # Classes names: 0: aeroplane 1: bicycle 2: bird 3: boat 4: bottle 5: bus 6: car 7: cat 8: chair 9: cow 10: diningtable 11: dog 12: horse 13: motorbike 14: person 15: pottedplant 16: sheep 17: sofa 18: train 19: tvmonitor # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | import xml.etree.ElementTree as ET from tqdm import tqdm from ultralytics.utils.downloads import download from pathlib import Path def convert_label(path, lb_path, year, image_id): def convert_box(size, box): dw, dh = 1. / size[0], 1. / size[1] x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2] return x * dw, y * dh, w * dw, h * dh in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml') out_file = open(lb_path, 'w') tree = ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) names = list(yaml['names'].values()) # names list for obj in root.iter('object'): cls = obj.find('name').text if cls in names and int(obj.find('difficult').text) != 1: xmlbox = obj.find('bndbox') bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')]) cls_id = names.index(cls) # class id out_file.write(" ".join(str(a) for a in (cls_id, *bb)) + '\n') # Download dir = Path(yaml['path']) # dataset root dir url = 'https://github.com/ultralytics/assets/releases/download/v0.0.0/' urls = [f'{url}VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images f'{url}VOCtest_06-Nov-2007.zip', # 438MB, 4953 images f'{url}VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images download(urls, dir=dir / 'images', curl=True, threads=3, exist_ok=True) # download and unzip over existing paths (required) # Convert path = dir / 'images/VOCdevkit' for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'): imgs_path = dir / 'images' / f'{image_set}{year}' lbs_path = dir / 'labels' / f'{image_set}{year}' imgs_path.mkdir(exist_ok=True, parents=True) lbs_path.mkdir(exist_ok=True, parents=True) with open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt') as f: image_ids = f.read().strip().split() for id in tqdm(image_ids, desc=f'{image_set}{year}'): f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path f.rename(imgs_path / f.name) # move image convert_label(path, lb_path, year, id) # convert labels to YOLO format