# Ultralytics YOLO 🚀, AGPL-3.0 license import subprocess from ultralytics.cfg import TASK2DATA, TASK2METRIC, get_save_dir from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS, checks def run_ray_tune( model, space: dict = None, grace_period: int = 10, gpu_per_trial: int = None, max_samples: int = 10, **train_args ): """ Runs hyperparameter tuning using Ray Tune. Args: model (YOLO): Model to run the tuner on. space (dict, optional): The hyperparameter search space. Defaults to None. grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10. gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None. max_samples (int, optional): The maximum number of trials to run. Defaults to 10. train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}. Returns: (dict): A dictionary containing the results of the hyperparameter search. Example: ```python from ultralytics import YOLO # Load a YOLOv8n model model = YOLO("yolo11n.pt") # Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset result_grid = model.tune(data="coco8.yaml", use_ray=True) ``` """ LOGGER.info("💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune") if train_args is None: train_args = {} try: subprocess.run("pip install ray[tune]".split(), check=True) # do not add single quotes here import ray from ray import tune from ray.air import RunConfig from ray.air.integrations.wandb import WandbLoggerCallback from ray.tune.schedulers import ASHAScheduler except ImportError: raise ModuleNotFoundError('Ray Tune required but not found. To install run: pip install "ray[tune]"') try: import wandb assert hasattr(wandb, "__version__") except (ImportError, AssertionError): wandb = False checks.check_version(ray.__version__, ">=2.0.0", "ray") default_space = { # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']), "lr0": tune.uniform(1e-5, 1e-1), "lrf": tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) "momentum": tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1 "weight_decay": tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4 "warmup_epochs": tune.uniform(0.0, 5.0), # warmup epochs (fractions ok) "warmup_momentum": tune.uniform(0.0, 0.95), # warmup initial momentum "box": tune.uniform(0.02, 0.2), # box loss gain "cls": tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels) "hsv_h": tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction) "hsv_s": tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction) "hsv_v": tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction) "degrees": tune.uniform(0.0, 45.0), # image rotation (+/- deg) "translate": tune.uniform(0.0, 0.9), # image translation (+/- fraction) "scale": tune.uniform(0.0, 0.9), # image scale (+/- gain) "shear": tune.uniform(0.0, 10.0), # image shear (+/- deg) "perspective": tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 "flipud": tune.uniform(0.0, 1.0), # image flip up-down (probability) "fliplr": tune.uniform(0.0, 1.0), # image flip left-right (probability) "bgr": tune.uniform(0.0, 1.0), # image channel BGR (probability) "mosaic": tune.uniform(0.0, 1.0), # image mixup (probability) "mixup": tune.uniform(0.0, 1.0), # image mixup (probability) "copy_paste": tune.uniform(0.0, 1.0), # segment copy-paste (probability) } # Put the model in ray store task = model.task model_in_store = ray.put(model) def _tune(config): """ Trains the YOLO model with the specified hyperparameters and additional arguments. Args: config (dict): A dictionary of hyperparameters to use for training. Returns: None """ model_to_train = ray.get(model_in_store) # get the model from ray store for tuning model_to_train.reset_callbacks() config.update(train_args) results = model_to_train.train(**config) return results.results_dict # Get search space if not space: space = default_space LOGGER.warning("WARNING ⚠️ search space not provided, using default search space.") # Get dataset data = train_args.get("data", TASK2DATA[task]) space["data"] = data if "data" not in train_args: LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".') # Define the trainable function with allocated resources trainable_with_resources = tune.with_resources(_tune, {"cpu": NUM_THREADS, "gpu": gpu_per_trial or 0}) # Define the ASHA scheduler for hyperparameter search asha_scheduler = ASHAScheduler( time_attr="epoch", metric=TASK2METRIC[task], mode="max", max_t=train_args.get("epochs") or DEFAULT_CFG_DICT["epochs"] or 100, grace_period=grace_period, reduction_factor=3, ) # Define the callbacks for the hyperparameter search tuner_callbacks = [WandbLoggerCallback(project="YOLOv8-tune")] if wandb else [] # Create the Ray Tune hyperparameter search tuner tune_dir = get_save_dir(DEFAULT_CFG, name="tune").resolve() # must be absolute dir tune_dir.mkdir(parents=True, exist_ok=True) tuner = tune.Tuner( trainable_with_resources, param_space=space, tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples), run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir), ) # Run the hyperparameter search tuner.fit() # Get the results of the hyperparameter search results = tuner.get_results() # Shut down Ray to clean up workers ray.shutdown() return results