# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib import importlib.metadata import inspect import json import logging.config import os import platform import re import subprocess import sys import threading import time import urllib import uuid from pathlib import Path from threading import Lock from types import SimpleNamespace from typing import Union import cv2 import matplotlib.pyplot as plt import numpy as np import torch import yaml from tqdm import tqdm as tqdm_original from ultralytics import __version__ # PyTorch Multi-GPU DDP Constants RANK = int(os.getenv("RANK", -1)) LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html # Other Constants ARGV = sys.argv or ["", ""] # sometimes sys.argv = [] FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLO ASSETS = ROOT / "assets" # default images DEFAULT_CFG_PATH = ROOT / "cfg/default.yaml" NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLO multiprocessing threads AUTOINSTALL = str(os.getenv("YOLO_AUTOINSTALL", True)).lower() == "true" # global auto-install mode VERBOSE = str(os.getenv("YOLO_VERBOSE", True)).lower() == "true" # global verbose mode TQDM_BAR_FORMAT = "{l_bar}{bar:10}{r_bar}" if VERBOSE else None # tqdm bar format LOGGING_NAME = "ultralytics" MACOS, LINUX, WINDOWS = (platform.system() == x for x in ["Darwin", "Linux", "Windows"]) # environment booleans ARM64 = platform.machine() in {"arm64", "aarch64"} # ARM64 booleans PYTHON_VERSION = platform.python_version() TORCH_VERSION = torch.__version__ TORCHVISION_VERSION = importlib.metadata.version("torchvision") # faster than importing torchvision IS_VSCODE = os.environ.get("TERM_PROGRAM", False) == "vscode" HELP_MSG = """ Examples for running Ultralytics: 1. Install the ultralytics package: pip install ultralytics 2. Use the Python SDK: from ultralytics import YOLO # Load a model model = YOLO("yolo11n.yaml") # build a new model from scratch model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training) # Use the model results = model.train(data="coco8.yaml", epochs=3) # train the model results = model.val() # evaluate model performance on the validation set results = model("https://ultralytics.com/images/bus.jpg") # predict on an image success = model.export(format="onnx") # export the model to ONNX format 3. Use the command line interface (CLI): Ultralytics 'yolo' CLI commands use the following syntax: yolo TASK MODE ARGS Where TASK (optional) is one of [detect, segment, classify, pose, obb] MODE (required) is one of [train, val, predict, export, track, benchmark] ARGS (optional) are any number of custom "arg=value" pairs like "imgsz=320" that override defaults. See all ARGS at https://docs.ultralytics.com/usage/cfg or with "yolo cfg" - Train a detection model for 10 epochs with an initial learning_rate of 0.01 yolo detect train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01 - Predict a YouTube video using a pretrained segmentation model at image size 320: yolo segment predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 - Val a pretrained detection model at batch-size 1 and image size 640: yolo detect val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640 - Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required) yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128 - Run special commands: yolo help yolo checks yolo version yolo settings yolo copy-cfg yolo cfg Docs: https://docs.ultralytics.com Community: https://community.ultralytics.com GitHub: https://github.com/ultralytics/ultralytics """ # Settings and Environment Variables torch.set_printoptions(linewidth=320, precision=4, profile="default") np.set_printoptions(linewidth=320, formatter={"float_kind": "{:11.5g}".format}) # format short g, %precision=5 cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) os.environ["NUMEXPR_MAX_THREADS"] = str(NUM_THREADS) # NumExpr max threads os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" # for deterministic training to avoid CUDA warning os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # suppress verbose TF compiler warnings in Colab os.environ["TORCH_CPP_LOG_LEVEL"] = "ERROR" # suppress "NNPACK.cpp could not initialize NNPACK" warnings os.environ["KINETO_LOG_LEVEL"] = "5" # suppress verbose PyTorch profiler output when computing FLOPs class TQDM(tqdm_original): """ A custom TQDM progress bar class that extends the original tqdm functionality. This class modifies the behavior of the original tqdm progress bar based on global settings and provides additional customization options. Attributes: disable (bool): Whether to disable the progress bar. Determined by the global VERBOSE setting and any passed 'disable' argument. bar_format (str): The format string for the progress bar. Uses the global TQDM_BAR_FORMAT if not explicitly set. Methods: __init__: Initializes the TQDM object with custom settings. Examples: >>> from ultralytics.utils import TQDM >>> for i in TQDM(range(100)): ... # Your processing code here ... pass """ def __init__(self, *args, **kwargs): """ Initializes a custom TQDM progress bar. This class extends the original tqdm class to provide customized behavior for Ultralytics projects. Args: *args (Any): Variable length argument list to be passed to the original tqdm constructor. **kwargs (Any): Arbitrary keyword arguments to be passed to the original tqdm constructor. Notes: - The progress bar is disabled if VERBOSE is False or if 'disable' is explicitly set to True in kwargs. - The default bar format is set to TQDM_BAR_FORMAT unless overridden in kwargs. Examples: >>> from ultralytics.utils import TQDM >>> for i in TQDM(range(100)): ... # Your code here ... pass """ kwargs["disable"] = not VERBOSE or kwargs.get("disable", False) # logical 'and' with default value if passed kwargs.setdefault("bar_format", TQDM_BAR_FORMAT) # override default value if passed super().__init__(*args, **kwargs) class SimpleClass: """ A simple base class for creating objects with string representations of their attributes. This class provides a foundation for creating objects that can be easily printed or represented as strings, showing all their non-callable attributes. It's useful for debugging and introspection of object states. Methods: __str__: Returns a human-readable string representation of the object. __repr__: Returns a machine-readable string representation of the object. __getattr__: Provides a custom attribute access error message with helpful information. Examples: >>> class MyClass(SimpleClass): ... def __init__(self): ... self.x = 10 ... self.y = "hello" >>> obj = MyClass() >>> print(obj) __main__.MyClass object with attributes: x: 10 y: 'hello' Notes: - This class is designed to be subclassed. It provides a convenient way to inspect object attributes. - The string representation includes the module and class name of the object. - Callable attributes and attributes starting with an underscore are excluded from the string representation. """ def __str__(self): """Return a human-readable string representation of the object.""" attr = [] for a in dir(self): v = getattr(self, a) if not callable(v) and not a.startswith("_"): if isinstance(v, SimpleClass): # Display only the module and class name for subclasses s = f"{a}: {v.__module__}.{v.__class__.__name__} object" else: s = f"{a}: {repr(v)}" attr.append(s) return f"{self.__module__}.{self.__class__.__name__} object with attributes:\n\n" + "\n".join(attr) def __repr__(self): """Return a machine-readable string representation of the object.""" return self.__str__() def __getattr__(self, attr): """Custom attribute access error message with helpful information.""" name = self.__class__.__name__ raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") class IterableSimpleNamespace(SimpleNamespace): """ An iterable SimpleNamespace class that provides enhanced functionality for attribute access and iteration. This class extends the SimpleNamespace class with additional methods for iteration, string representation, and attribute access. It is designed to be used as a convenient container for storing and accessing configuration parameters. Methods: __iter__: Returns an iterator of key-value pairs from the namespace's attributes. __str__: Returns a human-readable string representation of the object. __getattr__: Provides a custom attribute access error message with helpful information. get: Retrieves the value of a specified key, or a default value if the key doesn't exist. Examples: >>> cfg = IterableSimpleNamespace(a=1, b=2, c=3) >>> for k, v in cfg: ... print(f"{k}: {v}") a: 1 b: 2 c: 3 >>> print(cfg) a=1 b=2 c=3 >>> cfg.get("b") 2 >>> cfg.get("d", "default") 'default' Notes: This class is particularly useful for storing configuration parameters in a more accessible and iterable format compared to a standard dictionary. """ def __iter__(self): """Return an iterator of key-value pairs from the namespace's attributes.""" return iter(vars(self).items()) def __str__(self): """Return a human-readable string representation of the object.""" return "\n".join(f"{k}={v}" for k, v in vars(self).items()) def __getattr__(self, attr): """Custom attribute access error message with helpful information.""" name = self.__class__.__name__ raise AttributeError( f""" '{name}' object has no attribute '{attr}'. This may be caused by a modified or out of date ultralytics 'default.yaml' file.\nPlease update your code with 'pip install -U ultralytics' and if necessary replace {DEFAULT_CFG_PATH} with the latest version from https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/default.yaml """ ) def get(self, key, default=None): """Return the value of the specified key if it exists; otherwise, return the default value.""" return getattr(self, key, default) def plt_settings(rcparams=None, backend="Agg"): """ Decorator to temporarily set rc parameters and the backend for a plotting function. Example: decorator: @plt_settings({"font.size": 12}) context manager: with plt_settings({"font.size": 12}): Args: rcparams (dict): Dictionary of rc parameters to set. backend (str, optional): Name of the backend to use. Defaults to 'Agg'. Returns: (Callable): Decorated function with temporarily set rc parameters and backend. This decorator can be applied to any function that needs to have specific matplotlib rc parameters and backend for its execution. """ if rcparams is None: rcparams = {"font.size": 11} def decorator(func): """Decorator to apply temporary rc parameters and backend to a function.""" def wrapper(*args, **kwargs): """Sets rc parameters and backend, calls the original function, and restores the settings.""" original_backend = plt.get_backend() switch = backend.lower() != original_backend.lower() if switch: plt.close("all") # auto-close()ing of figures upon backend switching is deprecated since 3.8 plt.switch_backend(backend) # Plot with backend and always revert to original backend try: with plt.rc_context(rcparams): result = func(*args, **kwargs) finally: if switch: plt.close("all") plt.switch_backend(original_backend) return result return wrapper return decorator def set_logging(name="LOGGING_NAME", verbose=True): """ Sets up logging with UTF-8 encoding and configurable verbosity. This function configures logging for the Ultralytics library, setting the appropriate logging level and formatter based on the verbosity flag and the current process rank. It handles special cases for Windows environments where UTF-8 encoding might not be the default. Args: name (str): Name of the logger. Defaults to "LOGGING_NAME". verbose (bool): Flag to set logging level to INFO if True, ERROR otherwise. Defaults to True. Examples: >>> set_logging(name="ultralytics", verbose=True) >>> logger = logging.getLogger("ultralytics") >>> logger.info("This is an info message") Notes: - On Windows, this function attempts to reconfigure stdout to use UTF-8 encoding if possible. - If reconfiguration is not possible, it falls back to a custom formatter that handles non-UTF-8 environments. - The function sets up a StreamHandler with the appropriate formatter and level. - The logger's propagate flag is set to False to prevent duplicate logging in parent loggers. """ level = logging.INFO if verbose and RANK in {-1, 0} else logging.ERROR # rank in world for Multi-GPU trainings # Configure the console (stdout) encoding to UTF-8, with checks for compatibility formatter = logging.Formatter("%(message)s") # Default formatter if WINDOWS and hasattr(sys.stdout, "encoding") and sys.stdout.encoding != "utf-8": class CustomFormatter(logging.Formatter): def format(self, record): """Sets up logging with UTF-8 encoding and configurable verbosity.""" return emojis(super().format(record)) try: # Attempt to reconfigure stdout to use UTF-8 encoding if possible if hasattr(sys.stdout, "reconfigure"): sys.stdout.reconfigure(encoding="utf-8") # For environments where reconfigure is not available, wrap stdout in a TextIOWrapper elif hasattr(sys.stdout, "buffer"): import io sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding="utf-8") else: formatter = CustomFormatter("%(message)s") except Exception as e: print(f"Creating custom formatter for non UTF-8 environments due to {e}") formatter = CustomFormatter("%(message)s") # Create and configure the StreamHandler with the appropriate formatter and level stream_handler = logging.StreamHandler(sys.stdout) stream_handler.setFormatter(formatter) stream_handler.setLevel(level) # Set up the logger logger = logging.getLogger(name) logger.setLevel(level) logger.addHandler(stream_handler) logger.propagate = False return logger # Set logger LOGGER = set_logging(LOGGING_NAME, verbose=VERBOSE) # define globally (used in train.py, val.py, predict.py, etc.) for logger in "sentry_sdk", "urllib3.connectionpool": logging.getLogger(logger).setLevel(logging.CRITICAL + 1) def emojis(string=""): """Return platform-dependent emoji-safe version of string.""" return string.encode().decode("ascii", "ignore") if WINDOWS else string class ThreadingLocked: """ A decorator class for ensuring thread-safe execution of a function or method. This class can be used as a decorator to make sure that if the decorated function is called from multiple threads, only one thread at a time will be able to execute the function. Attributes: lock (threading.Lock): A lock object used to manage access to the decorated function. Example: ```python from ultralytics.utils import ThreadingLocked @ThreadingLocked() def my_function(): # Your code here ``` """ def __init__(self): """Initializes the decorator class for thread-safe execution of a function or method.""" self.lock = threading.Lock() def __call__(self, f): """Run thread-safe execution of function or method.""" from functools import wraps @wraps(f) def decorated(*args, **kwargs): """Applies thread-safety to the decorated function or method.""" with self.lock: return f(*args, **kwargs) return decorated def yaml_save(file="data.yaml", data=None, header=""): """ Save YAML data to a file. Args: file (str, optional): File name. Default is 'data.yaml'. data (dict): Data to save in YAML format. header (str, optional): YAML header to add. Returns: (None): Data is saved to the specified file. """ if data is None: data = {} file = Path(file) if not file.parent.exists(): # Create parent directories if they don't exist file.parent.mkdir(parents=True, exist_ok=True) # Convert Path objects to strings valid_types = int, float, str, bool, list, tuple, dict, type(None) for k, v in data.items(): if not isinstance(v, valid_types): data[k] = str(v) # Dump data to file in YAML format with open(file, "w", errors="ignore", encoding="utf-8") as f: if header: f.write(header) yaml.safe_dump(data, f, sort_keys=False, allow_unicode=True) def yaml_load(file="data.yaml", append_filename=False): """ Load YAML data from a file. Args: file (str, optional): File name. Default is 'data.yaml'. append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False. Returns: (dict): YAML data and file name. """ assert Path(file).suffix in {".yaml", ".yml"}, f"Attempting to load non-YAML file {file} with yaml_load()" with open(file, errors="ignore", encoding="utf-8") as f: s = f.read() # string # Remove special characters if not s.isprintable(): s = re.sub(r"[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+", "", s) # Add YAML filename to dict and return data = yaml.safe_load(s) or {} # always return a dict (yaml.safe_load() may return None for empty files) if append_filename: data["yaml_file"] = str(file) return data def yaml_print(yaml_file: Union[str, Path, dict]) -> None: """ Pretty prints a YAML file or a YAML-formatted dictionary. Args: yaml_file: The file path of the YAML file or a YAML-formatted dictionary. Returns: (None) """ yaml_dict = yaml_load(yaml_file) if isinstance(yaml_file, (str, Path)) else yaml_file dump = yaml.dump(yaml_dict, sort_keys=False, allow_unicode=True, width=float("inf")) LOGGER.info(f"Printing '{colorstr('bold', 'black', yaml_file)}'\n\n{dump}") # Default configuration DEFAULT_CFG_DICT = yaml_load(DEFAULT_CFG_PATH) for k, v in DEFAULT_CFG_DICT.items(): if isinstance(v, str) and v.lower() == "none": DEFAULT_CFG_DICT[k] = None DEFAULT_CFG_KEYS = DEFAULT_CFG_DICT.keys() DEFAULT_CFG = IterableSimpleNamespace(**DEFAULT_CFG_DICT) def read_device_model() -> str: """ Reads the device model information from the system and caches it for quick access. Used by is_jetson() and is_raspberrypi(). Returns: (str): Model file contents if read successfully or empty string otherwise. """ try: with open("/proc/device-tree/model") as f: return f.read() except: # noqa E722 return "" def is_ubuntu() -> bool: """ Check if the OS is Ubuntu. Returns: (bool): True if OS is Ubuntu, False otherwise. """ try: with open("/etc/os-release") as f: return "ID=ubuntu" in f.read() except FileNotFoundError: return False def is_colab(): """ Check if the current script is running inside a Google Colab notebook. Returns: (bool): True if running inside a Colab notebook, False otherwise. """ return "COLAB_RELEASE_TAG" in os.environ or "COLAB_BACKEND_VERSION" in os.environ def is_kaggle(): """ Check if the current script is running inside a Kaggle kernel. Returns: (bool): True if running inside a Kaggle kernel, False otherwise. """ return os.environ.get("PWD") == "/kaggle/working" and os.environ.get("KAGGLE_URL_BASE") == "https://www.kaggle.com" def is_jupyter(): """ Check if the current script is running inside a Jupyter Notebook. Verified on Colab, Jupyterlab, Kaggle, Paperspace. Returns: (bool): True if running inside a Jupyter Notebook, False otherwise. """ return "get_ipython" in locals() def is_docker() -> bool: """ Determine if the script is running inside a Docker container. Returns: (bool): True if the script is running inside a Docker container, False otherwise. """ try: with open("/proc/self/cgroup") as f: return "docker" in f.read() except: # noqa E722 return False def is_raspberrypi() -> bool: """ Determines if the Python environment is running on a Raspberry Pi by checking the device model information. Returns: (bool): True if running on a Raspberry Pi, False otherwise. """ return "Raspberry Pi" in PROC_DEVICE_MODEL def is_jetson() -> bool: """ Determines if the Python environment is running on a Jetson Nano or Jetson Orin device by checking the device model information. Returns: (bool): True if running on a Jetson Nano or Jetson Orin, False otherwise. """ return "NVIDIA" in PROC_DEVICE_MODEL # i.e. "NVIDIA Jetson Nano" or "NVIDIA Orin NX" def is_online() -> bool: """ Check internet connectivity by attempting to connect to a known online host. Returns: (bool): True if connection is successful, False otherwise. """ try: assert str(os.getenv("YOLO_OFFLINE", "")).lower() != "true" # check if ENV var YOLO_OFFLINE="True" import socket for dns in ("1.1.1.1", "8.8.8.8"): # check Cloudflare and Google DNS socket.create_connection(address=(dns, 80), timeout=2.0).close() return True except: # noqa E722 return False def is_pip_package(filepath: str = __name__) -> bool: """ Determines if the file at the given filepath is part of a pip package. Args: filepath (str): The filepath to check. Returns: (bool): True if the file is part of a pip package, False otherwise. """ import importlib.util # Get the spec for the module spec = importlib.util.find_spec(filepath) # Return whether the spec is not None and the origin is not None (indicating it is a package) return spec is not None and spec.origin is not None def is_dir_writeable(dir_path: Union[str, Path]) -> bool: """ Check if a directory is writeable. Args: dir_path (str | Path): The path to the directory. Returns: (bool): True if the directory is writeable, False otherwise. """ return os.access(str(dir_path), os.W_OK) def is_pytest_running(): """ Determines whether pytest is currently running or not. Returns: (bool): True if pytest is running, False otherwise. """ return ("PYTEST_CURRENT_TEST" in os.environ) or ("pytest" in sys.modules) or ("pytest" in Path(ARGV[0]).stem) def is_github_action_running() -> bool: """ Determine if the current environment is a GitHub Actions runner. Returns: (bool): True if the current environment is a GitHub Actions runner, False otherwise. """ return "GITHUB_ACTIONS" in os.environ and "GITHUB_WORKFLOW" in os.environ and "RUNNER_OS" in os.environ def get_git_dir(): """ Determines whether the current file is part of a git repository and if so, returns the repository root directory. If the current file is not part of a git repository, returns None. Returns: (Path | None): Git root directory if found or None if not found. """ for d in Path(__file__).parents: if (d / ".git").is_dir(): return d def is_git_dir(): """ Determines whether the current file is part of a git repository. If the current file is not part of a git repository, returns None. Returns: (bool): True if current file is part of a git repository. """ return GIT_DIR is not None def get_git_origin_url(): """ Retrieves the origin URL of a git repository. Returns: (str | None): The origin URL of the git repository or None if not git directory. """ if IS_GIT_DIR: try: origin = subprocess.check_output(["git", "config", "--get", "remote.origin.url"]) return origin.decode().strip() except subprocess.CalledProcessError: return None def get_git_branch(): """ Returns the current git branch name. If not in a git repository, returns None. Returns: (str | None): The current git branch name or None if not a git directory. """ if IS_GIT_DIR: try: origin = subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"]) return origin.decode().strip() except subprocess.CalledProcessError: return None def get_default_args(func): """ Returns a dictionary of default arguments for a function. Args: func (callable): The function to inspect. Returns: (dict): A dictionary where each key is a parameter name, and each value is the default value of that parameter. """ signature = inspect.signature(func) return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty} def get_ubuntu_version(): """ Retrieve the Ubuntu version if the OS is Ubuntu. Returns: (str): Ubuntu version or None if not an Ubuntu OS. """ if is_ubuntu(): try: with open("/etc/os-release") as f: return re.search(r'VERSION_ID="(\d+\.\d+)"', f.read())[1] except (FileNotFoundError, AttributeError): return None def get_user_config_dir(sub_dir="Ultralytics"): """ Return the appropriate config directory based on the environment operating system. Args: sub_dir (str): The name of the subdirectory to create. Returns: (Path): The path to the user config directory. """ if WINDOWS: path = Path.home() / "AppData" / "Roaming" / sub_dir elif MACOS: # macOS path = Path.home() / "Library" / "Application Support" / sub_dir elif LINUX: path = Path.home() / ".config" / sub_dir else: raise ValueError(f"Unsupported operating system: {platform.system()}") # GCP and AWS lambda fix, only /tmp is writeable if not is_dir_writeable(path.parent): LOGGER.warning( f"WARNING ⚠️ user config directory '{path}' is not writeable, defaulting to '/tmp' or CWD." "Alternatively you can define a YOLO_CONFIG_DIR environment variable for this path." ) path = Path("/tmp") / sub_dir if is_dir_writeable("/tmp") else Path().cwd() / sub_dir # Create the subdirectory if it does not exist path.mkdir(parents=True, exist_ok=True) return path # Define constants (required below) PROC_DEVICE_MODEL = read_device_model() # is_jetson() and is_raspberrypi() depend on this constant ONLINE = is_online() IS_COLAB = is_colab() IS_DOCKER = is_docker() IS_JETSON = is_jetson() IS_JUPYTER = is_jupyter() IS_KAGGLE = is_kaggle() IS_PIP_PACKAGE = is_pip_package() IS_RASPBERRYPI = is_raspberrypi() GIT_DIR = get_git_dir() IS_GIT_DIR = is_git_dir() USER_CONFIG_DIR = Path(os.getenv("YOLO_CONFIG_DIR") or get_user_config_dir()) # Ultralytics settings dir SETTINGS_FILE = USER_CONFIG_DIR / "settings.json" def colorstr(*input): r""" Colors a string based on the provided color and style arguments. Utilizes ANSI escape codes. See https://en.wikipedia.org/wiki/ANSI_escape_code for more details. This function can be called in two ways: - colorstr('color', 'style', 'your string') - colorstr('your string') In the second form, 'blue' and 'bold' will be applied by default. Args: *input (str | Path): A sequence of strings where the first n-1 strings are color and style arguments, and the last string is the one to be colored. Supported Colors and Styles: Basic Colors: 'black', 'red', 'green', 'yellow', 'blue', 'magenta', 'cyan', 'white' Bright Colors: 'bright_black', 'bright_red', 'bright_green', 'bright_yellow', 'bright_blue', 'bright_magenta', 'bright_cyan', 'bright_white' Misc: 'end', 'bold', 'underline' Returns: (str): The input string wrapped with ANSI escape codes for the specified color and style. Examples: >>> colorstr("blue", "bold", "hello world") >>> "\033[34m\033[1mhello world\033[0m" """ *args, string = input if len(input) > 1 else ("blue", "bold", input[0]) # color arguments, string colors = { "black": "\033[30m", # basic colors "red": "\033[31m", "green": "\033[32m", "yellow": "\033[33m", "blue": "\033[34m", "magenta": "\033[35m", "cyan": "\033[36m", "white": "\033[37m", "bright_black": "\033[90m", # bright colors "bright_red": "\033[91m", "bright_green": "\033[92m", "bright_yellow": "\033[93m", "bright_blue": "\033[94m", "bright_magenta": "\033[95m", "bright_cyan": "\033[96m", "bright_white": "\033[97m", "end": "\033[0m", # misc "bold": "\033[1m", "underline": "\033[4m", } return "".join(colors[x] for x in args) + f"{string}" + colors["end"] def remove_colorstr(input_string): """ Removes ANSI escape codes from a string, effectively un-coloring it. Args: input_string (str): The string to remove color and style from. Returns: (str): A new string with all ANSI escape codes removed. Examples: >>> remove_colorstr(colorstr("blue", "bold", "hello world")) >>> "hello world" """ ansi_escape = re.compile(r"\x1B\[[0-9;]*[A-Za-z]") return ansi_escape.sub("", input_string) class TryExcept(contextlib.ContextDecorator): """ Ultralytics TryExcept class. Use as @TryExcept() decorator or 'with TryExcept():' context manager. Examples: As a decorator: >>> @TryExcept(msg="Error occurred in func", verbose=True) >>> def func(): >>> # Function logic here >>> pass As a context manager: >>> with TryExcept(msg="Error occurred in block", verbose=True): >>> # Code block here >>> pass """ def __init__(self, msg="", verbose=True): """Initialize TryExcept class with optional message and verbosity settings.""" self.msg = msg self.verbose = verbose def __enter__(self): """Executes when entering TryExcept context, initializes instance.""" pass def __exit__(self, exc_type, value, traceback): """Defines behavior when exiting a 'with' block, prints error message if necessary.""" if self.verbose and value: print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}")) return True class Retry(contextlib.ContextDecorator): """ Retry class for function execution with exponential backoff. Can be used as a decorator to retry a function on exceptions, up to a specified number of times with an exponentially increasing delay between retries. Examples: Example usage as a decorator: >>> @Retry(times=3, delay=2) >>> def test_func(): >>> # Replace with function logic that may raise exceptions >>> return True """ def __init__(self, times=3, delay=2): """Initialize Retry class with specified number of retries and delay.""" self.times = times self.delay = delay self._attempts = 0 def __call__(self, func): """Decorator implementation for Retry with exponential backoff.""" def wrapped_func(*args, **kwargs): """Applies retries to the decorated function or method.""" self._attempts = 0 while self._attempts < self.times: try: return func(*args, **kwargs) except Exception as e: self._attempts += 1 print(f"Retry {self._attempts}/{self.times} failed: {e}") if self._attempts >= self.times: raise e time.sleep(self.delay * (2**self._attempts)) # exponential backoff delay return wrapped_func def threaded(func): """ Multi-threads a target function by default and returns the thread or function result. Use as @threaded decorator. The function runs in a separate thread unless 'threaded=False' is passed. """ def wrapper(*args, **kwargs): """Multi-threads a given function based on 'threaded' kwarg and returns the thread or function result.""" if kwargs.pop("threaded", True): # run in thread thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True) thread.start() return thread else: return func(*args, **kwargs) return wrapper def set_sentry(): """ Initialize the Sentry SDK for error tracking and reporting. Only used if sentry_sdk package is installed and sync=True in settings. Run 'yolo settings' to see and update settings. Conditions required to send errors (ALL conditions must be met or no errors will be reported): - sentry_sdk package is installed - sync=True in YOLO settings - pytest is not running - running in a pip package installation - running in a non-git directory - running with rank -1 or 0 - online environment - CLI used to run package (checked with 'yolo' as the name of the main CLI command) The function also configures Sentry SDK to ignore KeyboardInterrupt and FileNotFoundError exceptions and to exclude events with 'out of memory' in their exception message. Additionally, the function sets custom tags and user information for Sentry events. """ if ( not SETTINGS["sync"] or RANK not in {-1, 0} or Path(ARGV[0]).name != "yolo" or TESTS_RUNNING or not ONLINE or not IS_PIP_PACKAGE or IS_GIT_DIR ): return # If sentry_sdk package is not installed then return and do not use Sentry try: import sentry_sdk # noqa except ImportError: return def before_send(event, hint): """ Modify the event before sending it to Sentry based on specific exception types and messages. Args: event (dict): The event dictionary containing information about the error. hint (dict): A dictionary containing additional information about the error. Returns: dict: The modified event or None if the event should not be sent to Sentry. """ if "exc_info" in hint: exc_type, exc_value, _ = hint["exc_info"] if exc_type in {KeyboardInterrupt, FileNotFoundError} or "out of memory" in str(exc_value): return None # do not send event event["tags"] = { "sys_argv": ARGV[0], "sys_argv_name": Path(ARGV[0]).name, "install": "git" if IS_GIT_DIR else "pip" if IS_PIP_PACKAGE else "other", "os": ENVIRONMENT, } return event sentry_sdk.init( dsn="https://888e5a0778212e1d0314c37d4b9aae5d@o4504521589325824.ingest.us.sentry.io/4504521592406016", debug=False, auto_enabling_integrations=False, traces_sample_rate=1.0, release=__version__, environment="production", # 'dev' or 'production' before_send=before_send, ignore_errors=[KeyboardInterrupt, FileNotFoundError], ) sentry_sdk.set_user({"id": SETTINGS["uuid"]}) # SHA-256 anonymized UUID hash class JSONDict(dict): """ A dictionary-like class that provides JSON persistence for its contents. This class extends the built-in dictionary to automatically save its contents to a JSON file whenever they are modified. It ensures thread-safe operations using a lock. Attributes: file_path (Path): The path to the JSON file used for persistence. lock (threading.Lock): A lock object to ensure thread-safe operations. Methods: _load: Loads the data from the JSON file into the dictionary. _save: Saves the current state of the dictionary to the JSON file. __setitem__: Stores a key-value pair and persists it to disk. __delitem__: Removes an item and updates the persistent storage. update: Updates the dictionary and persists changes. clear: Clears all entries and updates the persistent storage. Examples: >>> json_dict = JSONDict("data.json") >>> json_dict["key"] = "value" >>> print(json_dict["key"]) value >>> del json_dict["key"] >>> json_dict.update({"new_key": "new_value"}) >>> json_dict.clear() """ def __init__(self, file_path: Union[str, Path] = "data.json"): """Initialize a JSONDict object with a specified file path for JSON persistence.""" super().__init__() self.file_path = Path(file_path) self.lock = Lock() self._load() def _load(self): """Load the data from the JSON file into the dictionary.""" try: if self.file_path.exists(): with open(self.file_path) as f: self.update(json.load(f)) except json.JSONDecodeError: print(f"Error decoding JSON from {self.file_path}. Starting with an empty dictionary.") except Exception as e: print(f"Error reading from {self.file_path}: {e}") def _save(self): """Save the current state of the dictionary to the JSON file.""" try: self.file_path.parent.mkdir(parents=True, exist_ok=True) with open(self.file_path, "w") as f: json.dump(dict(self), f, indent=2, default=self._json_default) except Exception as e: print(f"Error writing to {self.file_path}: {e}") @staticmethod def _json_default(obj): """Handle JSON serialization of Path objects.""" if isinstance(obj, Path): return str(obj) raise TypeError(f"Object of type {type(obj).__name__} is not JSON serializable") def __setitem__(self, key, value): """Store a key-value pair and persist to disk.""" with self.lock: super().__setitem__(key, value) self._save() def __delitem__(self, key): """Remove an item and update the persistent storage.""" with self.lock: super().__delitem__(key) self._save() def __str__(self): """Return a pretty-printed JSON string representation of the dictionary.""" return f'JSONDict("{self.file_path}"):\n{json.dumps(dict(self), indent=2, ensure_ascii=False, default=self._json_default)}' def update(self, *args, **kwargs): """Update the dictionary and persist changes.""" with self.lock: super().update(*args, **kwargs) self._save() def clear(self): """Clear all entries and update the persistent storage.""" with self.lock: super().clear() self._save() class SettingsManager(JSONDict): """ SettingsManager class for managing and persisting Ultralytics settings. This class extends JSONDict to provide JSON persistence for settings, ensuring thread-safe operations and default values. It validates settings on initialization and provides methods to update or reset settings. Attributes: file (Path): The path to the JSON file used for persistence. version (str): The version of the settings schema. defaults (Dict): A dictionary containing default settings. help_msg (str): A help message for users on how to view and update settings. Methods: _validate_settings: Validates the current settings and resets if necessary. update: Updates settings, validating keys and types. reset: Resets the settings to default and saves them. Examples: Initialize and update settings: >>> settings = SettingsManager() >>> settings.update(runs_dir="/new/runs/dir") >>> print(settings["runs_dir"]) /new/runs/dir """ def __init__(self, file=SETTINGS_FILE, version="0.0.6"): """Initializes the SettingsManager with default settings and loads user settings.""" import hashlib from ultralytics.utils.torch_utils import torch_distributed_zero_first root = GIT_DIR or Path() datasets_root = (root.parent if GIT_DIR and is_dir_writeable(root.parent) else root).resolve() self.file = Path(file) self.version = version self.defaults = { "settings_version": version, # Settings schema version "datasets_dir": str(datasets_root / "datasets"), # Datasets directory "weights_dir": str(root / "weights"), # Model weights directory "runs_dir": str(root / "runs"), # Experiment runs directory "uuid": hashlib.sha256(str(uuid.getnode()).encode()).hexdigest(), # SHA-256 anonymized UUID hash "sync": True, # Enable synchronization "api_key": "", # Ultralytics API Key "openai_api_key": "", # OpenAI API Key "clearml": True, # ClearML integration "comet": True, # Comet integration "dvc": True, # DVC integration "hub": True, # Ultralytics HUB integration "mlflow": True, # MLflow integration "neptune": True, # Neptune integration "raytune": True, # Ray Tune integration "tensorboard": True, # TensorBoard logging "wandb": True, # Weights & Biases logging "vscode_msg": True, # VSCode messaging } self.help_msg = ( f"\nView Ultralytics Settings with 'yolo settings' or at '{self.file}'" "\nUpdate Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. " "For help see https://docs.ultralytics.com/quickstart/#ultralytics-settings." ) with torch_distributed_zero_first(RANK): super().__init__(self.file) if not self.file.exists() or not self: # Check if file doesn't exist or is empty LOGGER.info(f"Creating new Ultralytics Settings v{version} file ✅ {self.help_msg}") self.reset() self._validate_settings() def _validate_settings(self): """Validate the current settings and reset if necessary.""" correct_keys = set(self.keys()) == set(self.defaults.keys()) correct_types = all(isinstance(self.get(k), type(v)) for k, v in self.defaults.items()) correct_version = self.get("settings_version", "") == self.version if not (correct_keys and correct_types and correct_version): LOGGER.warning( "WARNING ⚠️ Ultralytics settings reset to default values. This may be due to a possible problem " f"with your settings or a recent ultralytics package update. {self.help_msg}" ) self.reset() if self.get("datasets_dir") == self.get("runs_dir"): LOGGER.warning( f"WARNING ⚠️ Ultralytics setting 'datasets_dir: {self.get('datasets_dir')}' " f"must be different than 'runs_dir: {self.get('runs_dir')}'. " f"Please change one to avoid possible issues during training. {self.help_msg}" ) def update(self, *args, **kwargs): """Updates settings, validating keys and types.""" for k, v in kwargs.items(): if k not in self.defaults: raise KeyError(f"No Ultralytics setting '{k}'. {self.help_msg}") t = type(self.defaults[k]) if not isinstance(v, t): raise TypeError(f"Ultralytics setting '{k}' must be of type '{t}', not '{type(v)}'. {self.help_msg}") super().update(*args, **kwargs) def reset(self): """Resets the settings to default and saves them.""" self.clear() self.update(self.defaults) def deprecation_warn(arg, new_arg): """Issue a deprecation warning when a deprecated argument is used, suggesting an updated argument.""" LOGGER.warning(f"WARNING ⚠️ '{arg}' is deprecated and will be removed in in the future. Use '{new_arg}' instead.") def clean_url(url): """Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt.""" url = Path(url).as_posix().replace(":/", "://") # Pathlib turns :// -> :/, as_posix() for Windows return urllib.parse.unquote(url).split("?")[0] # '%2F' to '/', split https://url.com/file.txt?auth def url2file(url): """Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt.""" return Path(clean_url(url)).name def vscode_msg(ext="ultralytics.ultralytics-snippets") -> str: """Display a message to install Ultralytics-Snippets for VS Code if not already installed.""" path = (USER_CONFIG_DIR.parents[2] if WINDOWS else USER_CONFIG_DIR.parents[1]) / ".vscode/extensions" obs_file = path / ".obsolete" # file tracks uninstalled extensions, while source directory remains installed = any(path.glob(f"{ext}*")) and ext not in (obs_file.read_text("utf-8") if obs_file.exists() else "") url = "https://docs.ultralytics.com/integrations/vscode" return "" if installed else f"{colorstr('VS Code:')} view Ultralytics VS Code Extension ⚡ at {url}" # Run below code on utils init ------------------------------------------------------------------------------------ # Check first-install steps PREFIX = colorstr("Ultralytics: ") SETTINGS = SettingsManager() # initialize settings PERSISTENT_CACHE = JSONDict(USER_CONFIG_DIR / "persistent_cache.json") # initialize persistent cache DATASETS_DIR = Path(SETTINGS["datasets_dir"]) # global datasets directory WEIGHTS_DIR = Path(SETTINGS["weights_dir"]) # global weights directory RUNS_DIR = Path(SETTINGS["runs_dir"]) # global runs directory ENVIRONMENT = ( "Colab" if IS_COLAB else "Kaggle" if IS_KAGGLE else "Jupyter" if IS_JUPYTER else "Docker" if IS_DOCKER else platform.system() ) TESTS_RUNNING = is_pytest_running() or is_github_action_running() set_sentry() # Apply monkey patches from ultralytics.utils.patches import imread, imshow, imwrite, torch_load, torch_save torch.load = torch_load torch.save = torch_save if WINDOWS: # Apply cv2 patches for non-ASCII and non-UTF characters in image paths cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow