# Ultralytics YOLO 🚀, AGPL-3.0 license from functools import partial from pathlib import Path import torch from ultralytics.utils import IterableSimpleNamespace, yaml_load from ultralytics.utils.checks import check_yaml from .bot_sort import BOTSORT from .byte_tracker import BYTETracker # A mapping of tracker types to corresponding tracker classes TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT} def on_predict_start(predictor: object, persist: bool = False) -> None: """ Initialize trackers for object tracking during prediction. Args: predictor (object): The predictor object to initialize trackers for. persist (bool): Whether to persist the trackers if they already exist. Raises: AssertionError: If the tracker_type is not 'bytetrack' or 'botsort'. Examples: Initialize trackers for a predictor object: >>> predictor = SomePredictorClass() >>> on_predict_start(predictor, persist=True) """ if hasattr(predictor, "trackers") and persist: return tracker = check_yaml(predictor.args.tracker) cfg = IterableSimpleNamespace(**yaml_load(tracker)) if cfg.tracker_type not in {"bytetrack", "botsort"}: raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'") trackers = [] for _ in range(predictor.dataset.bs): tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30) trackers.append(tracker) if predictor.dataset.mode != "stream": # only need one tracker for other modes. break predictor.trackers = trackers predictor.vid_path = [None] * predictor.dataset.bs # for determining when to reset tracker on new video def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None: """ Postprocess detected boxes and update with object tracking. Args: predictor (object): The predictor object containing the predictions. persist (bool): Whether to persist the trackers if they already exist. Examples: Postprocess predictions and update with tracking >>> predictor = YourPredictorClass() >>> on_predict_postprocess_end(predictor, persist=True) """ path, im0s = predictor.batch[:2] is_obb = predictor.args.task == "obb" is_stream = predictor.dataset.mode == "stream" for i in range(len(im0s)): tracker = predictor.trackers[i if is_stream else 0] vid_path = predictor.save_dir / Path(path[i]).name if not persist and predictor.vid_path[i if is_stream else 0] != vid_path: tracker.reset() predictor.vid_path[i if is_stream else 0] = vid_path det = (predictor.results[i].obb if is_obb else predictor.results[i].boxes).cpu().numpy() if len(det) == 0: continue tracks = tracker.update(det, im0s[i]) if len(tracks) == 0: continue idx = tracks[:, -1].astype(int) predictor.results[i] = predictor.results[i][idx] update_args = {"obb" if is_obb else "boxes": torch.as_tensor(tracks[:, :-1])} predictor.results[i].update(**update_args) def register_tracker(model: object, persist: bool) -> None: """ Register tracking callbacks to the model for object tracking during prediction. Args: model (object): The model object to register tracking callbacks for. persist (bool): Whether to persist the trackers if they already exist. Examples: Register tracking callbacks to a YOLO model >>> model = YOLOModel() >>> register_tracker(model, persist=True) """ model.add_callback("on_predict_start", partial(on_predict_start, persist=persist)) model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist))