# Ultralytics YOLO 🚀, AGPL-3.0 license import itertools from ultralytics.data import build_yolo_dataset from ultralytics.models import yolo from ultralytics.nn.tasks import WorldModel from ultralytics.utils import DEFAULT_CFG, RANK, checks from ultralytics.utils.torch_utils import de_parallel def on_pretrain_routine_end(trainer): """Callback.""" if RANK in {-1, 0}: # NOTE: for evaluation names = [name.split("/")[0] for name in list(trainer.test_loader.dataset.data["names"].values())] de_parallel(trainer.ema.ema).set_classes(names, cache_clip_model=False) device = next(trainer.model.parameters()).device trainer.text_model, _ = trainer.clip.load("ViT-B/32", device=device) for p in trainer.text_model.parameters(): p.requires_grad_(False) class WorldTrainer(yolo.detect.DetectionTrainer): """ A class to fine-tune a world model on a close-set dataset. Example: ```python from ultralytics.models.yolo.world import WorldModel args = dict(model="yolov8s-world.pt", data="coco8.yaml", epochs=3) trainer = WorldTrainer(overrides=args) trainer.train() ``` """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """Initialize a WorldTrainer object with given arguments.""" if overrides is None: overrides = {} super().__init__(cfg, overrides, _callbacks) # Import and assign clip try: import clip except ImportError: checks.check_requirements("git+https://github.com/ultralytics/CLIP.git") import clip self.clip = clip def get_model(self, cfg=None, weights=None, verbose=True): """Return WorldModel initialized with specified config and weights.""" # NOTE: This `nc` here is the max number of different text samples in one image, rather than the actual `nc`. # NOTE: Following the official config, nc hard-coded to 80 for now. model = WorldModel( cfg["yaml_file"] if isinstance(cfg, dict) else cfg, ch=3, nc=min(self.data["nc"], 80), verbose=verbose and RANK == -1, ) if weights: model.load(weights) self.add_callback("on_pretrain_routine_end", on_pretrain_routine_end) return model def build_dataset(self, img_path, mode="train", batch=None): """ Build YOLO Dataset. Args: img_path (str): Path to the folder containing images. mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. batch (int, optional): Size of batches, this is for `rect`. Defaults to None. """ gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32) return build_yolo_dataset( self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs, multi_modal=mode == "train" ) def preprocess_batch(self, batch): """Preprocesses a batch of images for YOLOWorld training, adjusting formatting and dimensions as needed.""" batch = super().preprocess_batch(batch) # NOTE: add text features texts = list(itertools.chain(*batch["texts"])) text_token = self.clip.tokenize(texts).to(batch["img"].device) txt_feats = self.text_model.encode_text(text_token).to(dtype=batch["img"].dtype) # torch.float32 txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True) batch["txt_feats"] = txt_feats.reshape(len(batch["texts"]), -1, txt_feats.shape[-1]) return batch