# Copyright (c) 2024, EleutherAI # This file is based on code by the authors denoted below and has been modified from its original version. # # Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Megatron tokenizers.""" from abc import ABC from abc import abstractmethod from tokenizers import Tokenizer from transformers import GPT2Tokenizer, GPT2TokenizerFast import numpy as np import sentencepiece as spm from typing import List, Union def build_tokenizer(args): """Initialize tokenizer.""" if args.rank == 0: print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True) assert ( args.tokenizer_type is not None ), "tokenizer_type must be specified in the .yml config" # Select and instantiate the tokenizer. if args.tokenizer_type.lower() == "GPT2BPETokenizer".lower(): assert args.vocab_file is not None assert args.merge_file is not None tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file) elif args.tokenizer_type.lower() == "SPMTokenizer".lower(): assert args.vocab_file is not None tokenizer = SentencePieceTokenizer(args.vocab_file) elif args.tokenizer_type.lower() == "HFTokenizer".lower(): assert args.vocab_file is not None tokenizer = HFTokenizer(args.vocab_file) elif args.tokenizer_type.lower() == "HFGPT2Tokenizer".lower(): if args.vocab_file is None: print( "WARNING: No vocab file found, loading Huggingface's pretrained GPT2Tokenizer" ) tokenizer = HFGPT2Tokenizer(args.vocab_file) elif args.tokenizer_type.lower() == "CharLevelTokenizer".lower(): tokenizer = CharLevelTokenizer(vocab_size=512) elif args.tokenizer_type.lower() == "TiktokenTokenizer".lower(): assert args.vocab_file is not None tokenizer = TiktokenTokenizer(args.vocab_file) else: raise NotImplementedError( "{} tokenizer is not " "implemented.".format(args.tokenizer_type) ) # Add vocab size. args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args) return tokenizer def _vocab_size_with_padding(orig_vocab_size, args): """Pad vocab size so it is divisible by model parallel size and still having GPU friendly size.""" after = orig_vocab_size multiple = args.make_vocab_size_divisible_by * args.model_parallel_size while (after % multiple) != 0: after += 1 if args.rank == 0: print( " > padded vocab (size: {}) with {} dummy tokens " "(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after), flush=True, ) return after class AbstractTokenizer(ABC): """Abstract class for tokenizer.""" def __init__(self, name): self.name = name super().__init__() @property @abstractmethod def vocab_size(self): pass @property @abstractmethod def vocab(self): """Dictionary from vocab text token to id token.""" pass @property @abstractmethod def inv_vocab(self): """Dictionary from vocab id token to text token.""" pass @abstractmethod def tokenize(self, text): pass def detokenize(self, token_ids): raise NotImplementedError( "detokenizer is not implemented for {} " "tokenizer".format(self.name) ) @property def cls(self): raise NotImplementedError( "CLS is not provided for {} " "tokenizer".format(self.name) ) @property def sep(self): raise NotImplementedError( "SEP is not provided for {} " "tokenizer".format(self.name) ) @property def pad(self): raise NotImplementedError( "PAD is not provided for {} " "tokenizer".format(self.name) ) @property def eod(self): raise NotImplementedError( "EOD is not provided for {} " "tokenizer".format(self.name) ) @property def mask(self): raise NotImplementedError( "MASK is not provided for {} " "tokenizer".format(self.name) ) class _GPT2BPETokenizer(AbstractTokenizer): """Original GPT2 BPE tokenizer.""" def __init__(self, vocab_file, merge_file): name = "GPT2 BPE" super().__init__(name) self.tokenizer = GPT2Tokenizer( vocab_file, merge_file, errors="replace", special_tokens=[], max_len=None ) self.eod_id = self.tokenizer.encoder["<|endoftext|>"] @property def vocab_size(self): return len(self.tokenizer.encoder) @property def vocab(self): return self.tokenizer.encoder @property def inv_vocab(self): return self.tokenizer.decoder def tokenize(self, text): return self.tokenizer.encode(text) def detokenize(self, token_ids): return self.tokenizer.decode(token_ids) @property def eod(self): return self.eod_id class SentencePieceTokenizer(AbstractTokenizer): """Designed to Integrate SP's Tokenizer.""" def __init__(self, vocab_file): name = "SPM" super().__init__(name) self.tokenizer = spm.SentencePieceProcessor(model_file=vocab_file) self.eod_id = self.tokenizer.piece_to_id("<|endoftext|>") @property def vocab_size(self): return self.tokenizer.get_piece_size() @property def vocab(self): return { self.tokenizer.id_to_piece(idx): idx for idx in range(self.tokenizer.get_piece_size()) } @property def inv_vocab(self): return { idx: self.tokenizer.id_to_piece(idx) for idx in range(self.tokenizer.get_piece_size()) } def tokenize(self, text): return self.tokenizer.encode(text) def detokenize(self, token_ids): return self.tokenizer.decode(token_ids) @property def eod(self): return self.eod_id class HFTokenizer(AbstractTokenizer): """Designed to Integrate HF's Tokenizer library.""" def __init__(self, vocab_file): name = "HFTokenizer" super().__init__(name) self.tokenizer = Tokenizer.from_file(vocab_file) self.eod_id = self.tokenizer.token_to_id("<|endoftext|>") self.pad_id = self.tokenizer.token_to_id("<|padding|>") @property def vocab_size(self): return self.tokenizer.get_vocab_size() @property def vocab(self): return self.tokenizer.get_vocab() @property def inv_vocab(self): return self.tokenizer.decoder def tokenize(self, text: str): return self.tokenizer.encode(text).ids def tokenize_batch(self, text_batch: Union[List[str], str]): return self.tokenizer.encode_batch(text_batch) def detokenize(self, token_ids): return self.tokenizer.decode(token_ids) @property def eod(self): return self.eod_id class HFGPT2Tokenizer(AbstractTokenizer): """Designed to Integrate the pretrained OpenAI GPT2 Tokenizers from HF""" def __init__(self, vocab_file=None, fast=True): name = "HFGPT2Tokenizer" if fast: name += "Fast" super().__init__(name) if vocab_file is None: vocab_file = "gpt2" if fast: self.tokenizer = GPT2TokenizerFast.from_pretrained(vocab_file) else: self.tokenizer = GPT2Tokenizer.from_pretrained(vocab_file) self.tokenizer.add_special_tokens({"pad_token": "<|padding|>"}) self.eod_id = self.tokenizer.eos_token_id self.pad_id = self.tokenizer.pad_token_id @property def vocab_size(self): return len(self.tokenizer) @property def vocab(self): return self.tokenizer.get_vocab() @property def inv_vocab(self): return self.tokenizer._tokenizer.decoder def tokenize(self, text: str): return self.tokenizer.encode(text) def tokenize_batch(self, text_batch: Union[List[str], str]): if isinstance(text_batch, str): text_batch = [text_batch] return [self.tokenize(t) for t in text_batch] def detokenize(self, token_ids): return self.tokenizer.decode(token_ids) @property def eod(self): return self.eod_id class CharLevelTokenizer(AbstractTokenizer): """Character Level Tokenizer""" def __init__(self, vocab_size): name = "CharLevelTokenizer" super().__init__(name) self._vocab_size = vocab_size self.eod_id = 0 self.pad_id = 1 def clamp(self, n): return max(32, min(n, self.vocab_size)) @property def vocab_size(self): return self._vocab_size @property def vocab(self): raise NotImplementedError @property def inv_vocab(self): raise NotImplementedError def decode_token(self, token: int): return str(chr(self.clamp(token))) def tokenize(self, text: str): return list(np.fromstring(text, dtype=np.uint8)) def tokenize_batch(self, text_batch: Union[List[str], str]): if isinstance(text_batch, list): return [self.tokenize(s) for s in text_batch] else: return self.tokenize(text_batch) def detokenize(self, token_ids): return "".join(list(map(self.decode_token, token_ids))) @property def eod(self): return self.eod_id class TiktokenTokenizer(AbstractTokenizer): """Tokenizer from OpenAI's tiktoken implementation""" def __init__(self, vocab_file): try: import tiktoken except ModuleNotFoundError: print("Please install tiktoken: (https://github.com/openai/tiktoken)") raise Exception name = "TiktokenTokenizer" super().__init__(name) self.tokenizer = tiktoken.get_encoding(vocab_file) self.eod_id = self.tokenizer.eot_token self.pad_id = None @property def vocab_size(self): return self.tokenizer.n_vocab @property def vocab(self): raise NotImplementedError( "TiktokenTokenizer does not implement vocabulary access." ) @property def inv_vocab(self): raise NotImplementedError( "TiktokenTokenizer does not implement vocabulary access. \ To get the idx-th token in vocabulary, use tokenizer.decode([idx]) ." ) def tokenize(self, text: str): return self.tokenizer.encode(text) # , allowed_special="all") def tokenize_batch(self, text_batch: List[str]): return self.tokenizer.encode_batch(text_batch, allowed_special="all") def detokenize(self, token_ids): return self.tokenizer.decode(tokens=token_ids, errors="strict") @property def eod(self): return self.eod_id @property def pad(self): raise NotImplementedError