--- base_model: unsloth/gemma-2-2b-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - gemma2 - trl datasets: - Salesforce/xlam-function-calling-60k library_name: peft --- # Model Card for Model ID This model is a function calling version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) finetuned on the [Salesforce/xlam-function-calling-60k](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) dataset. # Uploaded model - **Developed by:** akshayballal - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-2-2b-bnb-4bit ### Usage ```python from unsloth import FastLanguageModel max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. model, tokenizer = FastLanguageModel.from_pretrained( model_name = "gemma2-2b-xlam-function-calling", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = 1024, dtype = dtype, load_in_4bit = load_in_4bit, ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference alpaca_prompt = """Below are the tools that you have access to these tools. Use them if required. ### Tools: {} ### Query: {} ### Response: {}""" tools = [ { "name": "upcoming", "description": "Fetches upcoming CS:GO matches data from the specified API endpoint.", "parameters": { "content_type": { "description": "The content type for the request, default is 'application/json'.", "type": "str", "default": "application/json", }, "page": { "description": "The page number to retrieve, default is 1.", "type": "int", "default": "1", }, "limit": { "description": "The number of matches to retrieve per page, default is 10.", "type": "int", "default": "10", }, }, } ] query = """Can you fetch the upcoming CS:GO matches for page 1 with a 'text/xml' content type and a limit of 20 matches? Also, can you fetch the upcoming matches for page 2 with the 'application/xml' content type and a limit of 15 matches?""" FastLanguageModel.for_inference(model) model_input = tokenizer(alpaca_prompt.format(tools, query, ""), return_tensors="pt") output = model.generate(**input, max_new_tokens=1024, temperature = 0.0) decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) ``` [](https://github.com/unslothai/unsloth)