import torch import json from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from datasets import load_dataset from peft import LoraConfig, PeftModel device_map = "auto" model = AutoModelForCausalLM.from_pretrained( "/path/to/meta-llama3-8b", #low_cpu_mem_usage=True, return_dict=True, torch_dtype=torch.float16, device_map=device_map, ) model = PeftModel.from_pretrained(model, "/path/to/llama3-8b-adapter", device_map=device_map) model = model.merge_and_unload() tokenizer = AutoTokenizer.from_pretrained("/path/to/meta-llama3-8b", trust_remote_code=True) tokenizer.pad_token_id = 18610 pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=4096, do_sample=False) print("Padding side:",tokenizer.padding_side) val_dataset = load_dataset("csv", data_files={'val':'/path/to/actseq-val-new.csv'})["val"] test_dataset = load_dataset("csv", data_files={'test':'/path/to/actseq-test-new.csv'})["test"] def formatting_prompts_func(example): output_texts = [] for i in range(len(example['dial_with_actions'])): text = f"Predict the action sequence (AS) for the Minecraft excerpt:\n {example['dial_with_actions'][i]}\n ### AS:" output_texts.append(text) return output_texts val_texts = formatting_prompts_func(val_dataset) test_texts = formatting_prompts_func(test_dataset) print("Val Length:", len(val_texts)) print("Test Length:", len(test_texts)) f = open("/path/to/val-output-file","w") for text in val_texts: print(text) print(pipe(text)[0]["generated_text"], file=f) f.close() f = open("/path/to/test-output-file","w") for text in test_texts: print(text) print(pipe(text)[0]["generated_text"], file=f) f.close()