---
base_model: akhooli/sbert_ar_nli_500k_norm
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'جوهرة مرتبّة ورنانة تنقل نقاطها العالمية دون محاضرات أو مواجهات. " '
- text: 'إنه حلو ومضحك وساحر ومبهج تمامًا. '
- text: 'نزهة مبهرة وممتعة مع أحد المخرجين الأكثر إبداعًا في فرنسا. '
- text: 'الحماقة الشاملة مثل هذه هي مسألة ذوق. '
- text: 'صراع بين البنية الاصطناعية للقصة والأسلوب المعاصر والطبيعي للفيلم... '
inference: true
model-index:
- name: SetFit with akhooli/sbert_ar_nli_500k_norm
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.76
name: Accuracy
---
# SetFit with akhooli/sbert_ar_nli_500k_norm
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| positive |
- '... إنه مفهوم مثل أي دليل دمى، وهو شيء يمكن حتى لغير التقنيين الاستمتاع به. '
- 'جوهرة مرتبّة ورنانة تنقل نقاطها العالمية دون محاضرات أو مواجهات. " '
- 'يتناقض مع كل ما أصبحنا نتوقعه من الأفلام في الوقت الحاضر. '
|
| negative | - 'واحد من أسوأ الأفلام لهذا العام. '
- 'الكثير من الأعداء لديهم شعور بالتعب والثرثرة. '
- 'حتى الدماء الخيالية لا يمكنها إخفاء الرائحة العفنة لسيناريو تود فارمر، وهو عبارة عن تجديد بسيط لفيلم 1979 الفضائي، مع بطلة شجاعة تقاتل وحشًا طليقًا في سفينة فضائية. '
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.76 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit")
# Run inference
preds = model("إنه حلو ومضحك وساحر ومبهج تمامًا. ")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 5 | 16.7 | 30 |
| Label | Training Sample Count |
|:---------|:----------------------|
| negative | 25 |
| positive | 25 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0476 | 1 | 0.3162 | - |
| 2.3810 | 50 | 0.1501 | - |
| 4.7619 | 100 | 0.0007 | - |
| 7.1429 | 150 | 0.0003 | - |
| 9.5238 | 200 | 0.0003 | - |
### Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```