--- base_model: akhooli/sbert_ar_nli_500k_norm library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'واحد من أعظم الأفلام التي رأيتها على الإطلاق. ' - text: 'إنها لا تلعب دورًا دراميًا أبدًا حتى عندما تحدث أشياء دراماتيكية للناس. ' - text: 'يستغل -lrb- headbanger -rrb- الصور النمطية بطريقة ممتعة، مع إضافة القليل من القلب والموضوع المقلق. ' - text: 'هناك بعض الضحك في هذا الفيلم، لكن فوضى ويليامز تصبح متعبة، والسخرية ضعيفة. ' - text: 'أحادية الجانب... تغازل الدعاية. ' inference: true model-index: - name: SetFit with akhooli/sbert_ar_nli_500k_norm results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7505197505197505 name: Accuracy --- # SetFit with akhooli/sbert_ar_nli_500k_norm This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | positive |