--- base_model: akhooli/sbert_ar_nli_500k_norm library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'لقد تم إنجازه من قبل ولكن لم يكن بهذه الوضوح أو بهذا القدر من الشغف. ' - text: 'بالنسبة لي، هذه الأوبرا ليست مفضلة، لذا فقد مر وقت طويل قبل أن تغني السيدة السمينة. ' - text: 'جودينج وكوبورن كلاهما فائزان بجائزة الأوسكار، وهي حقيقة تبدو غير قابلة للتصور عندما تشاهدهما وهما يشقان طريقهما بطريقة خرقاء عبر كلاب الثلج. ' - text: 'يتمتع الفيلم بلمعان عالي اللمعان وصدمات عالية الأوكتان التي تتوقعها من دي بالما، ولكن ما يجعله مؤثرًا هو أنه أيضًا أحد أذكى التعبيرات وأكثرها إمتاعًا عن الحب السينمائي الخالص الذي يأتي من مخرج أمريكي منذ سنوات . ' - text: 'ولكنه يأتي أيضًا مع الكسل والغطرسة التي يتميز بها الشيء الذي يعرف بالفعل أنه فاز. ' inference: true model-index: - name: SetFit with akhooli/sbert_ar_nli_500k_norm results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8783783783783784 name: Accuracy --- # SetFit with akhooli/sbert_ar_nli_500k_norm This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. Normalize the text before classifying as the model uses normalized text. Here's how to use the model: ```python pip install setfit from setfit import SetFitModel from unicodedata import normalize # Download model from Hub model = SetFitModel.from_pretrained("akhooli/setfit_ar_sst2") # Run inference queries = [ "يغلي الماء عند 100 درجة مئوية", "فعلا لقد أحببت ذلك الفيلم", "🤮 اﻷناناس مع البيتزا؟ إنه غير محبذ", "رأيت أناسا بائسين في الطريق", "لم يعجبني المطعم رغم أن السعر مقبول", "من باب جبر الخاطر هذه 3 نجوم لتقييم الخدمة", "من باب جبر الخواطر، هذه نجمة واحدة لخدمة ﻻ تستحق" ] queries_n = [normalize('NFKC', query) for query in queries] preds = model.predict(queries_n) print(preds) # if you want to see the probabilities for each label probas = model.predict_proba(queries_n) print(probas) ``` The rest of this card is auto-generated. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | | | positive | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8784 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("akhooli/setfit") # Run inference preds = model("لقد تم إنجازه من قبل ولكن لم يكن بهذه الوضوح أو بهذا القدر من الشغف. ") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 2 | 16.2702 | 52 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 2500 | | positive | 2500 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (1, 1) - max_steps: 5000 - sampling_strategy: undersampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - run_name: setfit_sst2_5k - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.3009 | - | | 0.04 | 100 | 0.2802 | - | | 0.08 | 200 | 0.2312 | - | | 0.12 | 300 | 0.1462 | - | | 0.16 | 400 | 0.0838 | - | | 0.2 | 500 | 0.0463 | - | | 0.24 | 600 | 0.033 | - | | 0.28 | 700 | 0.0206 | - | | 0.32 | 800 | 0.0195 | - | | 0.36 | 900 | 0.0174 | - | | 0.4 | 1000 | 0.013 | - | | 0.44 | 1100 | 0.0113 | - | | 0.48 | 1200 | 0.0095 | - | | 0.52 | 1300 | 0.0088 | - | | 0.56 | 1400 | 0.0075 | - | | 0.6 | 1500 | 0.0083 | - | | 0.64 | 1600 | 0.0061 | - | | 0.68 | 1700 | 0.0071 | - | | 0.72 | 1800 | 0.0069 | - | | 0.76 | 1900 | 0.0054 | - | | 0.8 | 2000 | 0.007 | - | | 0.84 | 2100 | 0.006 | - | | 0.88 | 2200 | 0.0051 | - | | 0.92 | 2300 | 0.0046 | - | | 0.96 | 2400 | 0.0041 | - | | 1.0 | 2500 | 0.0056 | - | | 1.04 | 2600 | 0.0054 | - | | 1.08 | 2700 | 0.0058 | - | | 1.12 | 2800 | 0.0043 | - | | 1.16 | 2900 | 0.0048 | - | | 1.2 | 3000 | 0.004 | - | | 1.24 | 3100 | 0.0036 | - | | 1.28 | 3200 | 0.0042 | - | | 1.32 | 3300 | 0.0041 | - | | 1.3600 | 3400 | 0.004 | - | | 1.4 | 3500 | 0.0029 | - | | 1.44 | 3600 | 0.0047 | - | | 1.48 | 3700 | 0.0041 | - | | 1.52 | 3800 | 0.0026 | - | | 1.56 | 3900 | 0.0029 | - | | 1.6 | 4000 | 0.0027 | - | | 1.6400 | 4100 | 0.0027 | - | | 1.6800 | 4200 | 0.0033 | - | | 1.72 | 4300 | 0.0031 | - | | 1.76 | 4400 | 0.003 | - | | 1.8 | 4500 | 0.0024 | - | | 1.8400 | 4600 | 0.0028 | - | | 1.88 | 4700 | 0.002 | - | | 1.92 | 4800 | 0.0017 | - | | 1.96 | 4900 | 0.0023 | - | | 2.0 | 5000 | 0.0014 | - | ### Framework Versions - Python: 3.10.14 - SetFit: 1.2.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.45.1 - PyTorch: 2.4.0 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```