---
base_model: akhooli/sbert_ar_nli_500k_norm
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: عزيزي جبران باسيل بدك تعرف كتييير منيح انو مش شغلتنا نحفظ امن اسرائيل يلي
ما منعترف ولن نعترف ب وجودها ابدا
- text: 'يجب على هؤلاك المجرمون الارهابيون وكل من دس فتنة انا يتحاسبو حساب مؤلم لكن
سؤال من سيحاسبهن '
- text: شيل عينك عن لبنان انت و كل كلب متلك حكايتك و غير هيك انشالله بتنباع بالعزى
- text: لسه بصرعوا طيزنا بدكن نصير متل العراق وليبيا يا حمير تجاوزناهن بأشواط، هلق
لو نصير متل العراق وليبيا تحسن كبير جدا
- text: كول هوا خسرتو بأرضك وبين جمهورك بعد ما منعت القطريين من تشجيع جمهورهم انتو
فاشلين في كل شئ وهم متفوقين عليكم في...
inference: true
model-index:
- name: SetFit with akhooli/sbert_ar_nli_500k_norm
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8452520515826495
name: Accuracy
---
# SetFit with akhooli/sbert_ar_nli_500k_norm
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| negative |
- 'يا ريت بيمنعوا الأرغيلة بلبنان، لأن غير هيك ما منعمل ثورة '
- 'أصلا جبران عندو طيارة وعندو قصر بأوروبا ومحيط الهادىء الى اسهم فيه وتم اكتشاف كوكب جديد مثل زحل وجوبيتير تم شرائه ك...'
- 'اكره البرازيل بس لا تقوليلي خلاص كلشي انتهى بليز'
|
| positive | - 'السيد والرئيس وليش عم تشددددد دخلك كل حجمك أرنب عند معلمك بالقرداحة'
- 'العوني اذا تمدن متل الجحش اذا تكدن بعمرك شفت عوني بيفهم'
- 'لا بس الوطن بدو تكنيس من ل متلك '
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8453 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs")
# Run inference
preds = model("شيل عينك عن لبنان انت و كل كلب متلك حكايتك و غير هيك انشالله بتنباع بالعزى")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 12.809 | 52 |
| Label | Training Sample Count |
|:---------|:----------------------|
| negative | 2000 |
| positive | 2000 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: 5000
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- run_name: setfit_hate_2kv
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0004 | 1 | 0.3239 | - |
| 0.04 | 100 | 0.277 | - |
| 0.08 | 200 | 0.2406 | - |
| 0.12 | 300 | 0.1737 | - |
| 0.16 | 400 | 0.1259 | - |
| 0.2 | 500 | 0.0701 | - |
| 0.24 | 600 | 0.0473 | - |
| 0.28 | 700 | 0.0298 | - |
| 0.32 | 800 | 0.0239 | - |
| 0.36 | 900 | 0.02 | - |
| 0.4 | 1000 | 0.0151 | - |
| 0.44 | 1100 | 0.0143 | - |
| 0.48 | 1200 | 0.0126 | - |
| 0.52 | 1300 | 0.0121 | - |
| 0.56 | 1400 | 0.0078 | - |
| 0.6 | 1500 | 0.0111 | - |
| 0.64 | 1600 | 0.0099 | - |
| 0.68 | 1700 | 0.0091 | - |
| 0.72 | 1800 | 0.0064 | - |
| 0.76 | 1900 | 0.0101 | - |
| 0.8 | 2000 | 0.0073 | - |
| 0.84 | 2100 | 0.0042 | - |
| 0.88 | 2200 | 0.0038 | - |
| 0.92 | 2300 | 0.0058 | - |
| 0.96 | 2400 | 0.0041 | - |
| 1.0 | 2500 | 0.0026 | - |
| 1.04 | 2600 | 0.0037 | - |
| 1.08 | 2700 | 0.0035 | - |
| 1.12 | 2800 | 0.0045 | - |
| 1.16 | 2900 | 0.0038 | - |
| 1.2 | 3000 | 0.0039 | - |
| 1.24 | 3100 | 0.0018 | - |
| 1.28 | 3200 | 0.003 | - |
| 1.32 | 3300 | 0.0028 | - |
| 1.3600 | 3400 | 0.0023 | - |
| 1.4 | 3500 | 0.0022 | - |
| 1.44 | 3600 | 0.0032 | - |
| 1.48 | 3700 | 0.0028 | - |
| 1.52 | 3800 | 0.0022 | - |
| 1.56 | 3900 | 0.0024 | - |
| 1.6 | 4000 | 0.0021 | - |
| 1.6400 | 4100 | 0.0032 | - |
| 1.6800 | 4200 | 0.0026 | - |
| 1.72 | 4300 | 0.0025 | - |
| 1.76 | 4400 | 0.003 | - |
| 1.8 | 4500 | 0.0028 | - |
| 1.8400 | 4600 | 0.003 | - |
| 1.88 | 4700 | 0.0028 | - |
| 1.92 | 4800 | 0.0033 | - |
| 1.96 | 4900 | 0.0019 | - |
| 2.0 | 5000 | 0.0023 | - |
### Framework Versions
- Python: 3.10.14
- SetFit: 1.2.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```