--- base_model: akhooli/sbert_ar_nli_500k_norm library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: عزيزي جبران باسيل بدك تعرف كتييير منيح انو مش شغلتنا نحفظ امن اسرائيل يلي ما منعترف ولن نعترف ب وجودها ابدا - text: 'يجب على هؤلاك المجرمون الارهابيون وكل من دس فتنة انا يتحاسبو حساب مؤلم لكن سؤال من سيحاسبهن ' - text: شيل عينك عن لبنان انت و كل كلب متلك حكايتك و غير هيك انشالله بتنباع بالعزى - text: لسه بصرعوا طيزنا بدكن نصير متل العراق وليبيا يا حمير تجاوزناهن بأشواط، هلق لو نصير متل العراق وليبيا تحسن كبير جدا - text: كول هوا خسرتو بأرضك وبين جمهورك بعد ما منعت القطريين من تشجيع جمهورهم انتو فاشلين في كل شئ وهم متفوقين عليكم في... inference: true model-index: - name: SetFit with akhooli/sbert_ar_nli_500k_norm results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8452520515826495 name: Accuracy --- # SetFit with akhooli/sbert_ar_nli_500k_norm This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | | | positive | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8453 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs") # Run inference preds = model("شيل عينك عن لبنان انت و كل كلب متلك حكايتك و غير هيك انشالله بتنباع بالعزى") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 1 | 12.809 | 52 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 2000 | | positive | 2000 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: 5000 - sampling_strategy: undersampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - run_name: setfit_hate_2kv - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.3239 | - | | 0.04 | 100 | 0.277 | - | | 0.08 | 200 | 0.2406 | - | | 0.12 | 300 | 0.1737 | - | | 0.16 | 400 | 0.1259 | - | | 0.2 | 500 | 0.0701 | - | | 0.24 | 600 | 0.0473 | - | | 0.28 | 700 | 0.0298 | - | | 0.32 | 800 | 0.0239 | - | | 0.36 | 900 | 0.02 | - | | 0.4 | 1000 | 0.0151 | - | | 0.44 | 1100 | 0.0143 | - | | 0.48 | 1200 | 0.0126 | - | | 0.52 | 1300 | 0.0121 | - | | 0.56 | 1400 | 0.0078 | - | | 0.6 | 1500 | 0.0111 | - | | 0.64 | 1600 | 0.0099 | - | | 0.68 | 1700 | 0.0091 | - | | 0.72 | 1800 | 0.0064 | - | | 0.76 | 1900 | 0.0101 | - | | 0.8 | 2000 | 0.0073 | - | | 0.84 | 2100 | 0.0042 | - | | 0.88 | 2200 | 0.0038 | - | | 0.92 | 2300 | 0.0058 | - | | 0.96 | 2400 | 0.0041 | - | | 1.0 | 2500 | 0.0026 | - | | 1.04 | 2600 | 0.0037 | - | | 1.08 | 2700 | 0.0035 | - | | 1.12 | 2800 | 0.0045 | - | | 1.16 | 2900 | 0.0038 | - | | 1.2 | 3000 | 0.0039 | - | | 1.24 | 3100 | 0.0018 | - | | 1.28 | 3200 | 0.003 | - | | 1.32 | 3300 | 0.0028 | - | | 1.3600 | 3400 | 0.0023 | - | | 1.4 | 3500 | 0.0022 | - | | 1.44 | 3600 | 0.0032 | - | | 1.48 | 3700 | 0.0028 | - | | 1.52 | 3800 | 0.0022 | - | | 1.56 | 3900 | 0.0024 | - | | 1.6 | 4000 | 0.0021 | - | | 1.6400 | 4100 | 0.0032 | - | | 1.6800 | 4200 | 0.0026 | - | | 1.72 | 4300 | 0.0025 | - | | 1.76 | 4400 | 0.003 | - | | 1.8 | 4500 | 0.0028 | - | | 1.8400 | 4600 | 0.003 | - | | 1.88 | 4700 | 0.0028 | - | | 1.92 | 4800 | 0.0033 | - | | 1.96 | 4900 | 0.0019 | - | | 2.0 | 5000 | 0.0023 | - | ### Framework Versions - Python: 3.10.14 - SetFit: 1.2.0.dev0 - Sentence Transformers: 3.1.1 - Transformers: 4.45.1 - PyTorch: 2.4.0 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```