--- base_model: akhooli/sbert_ar_nli_500k_norm library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: يا زلمة يلي بيصنع معنا معروف بنتشكره شو ما كان يكون وانتم ادعياء الاخوة العرب هول مش ايرانيين ولا عجم عرب متلنا متلهم - text: لعمي - text: هلق رجع لمن قلو الريس تبعو هش قلو مشمو على عيني ؟ - text: مثل الكليشيه وبشكل يومي في حدا بده يعاير التاني بيقوم بيشبهه بالكلب والله اذا حدا شبهني بالكلب بعتبرها مدح شديد - text: الله لا يحرمك من الهبل ان شاء الله inference: true model-index: - name: SetFit with akhooli/sbert_ar_nli_500k_norm results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8497652582159625 name: Accuracy --- # SetFit with akhooli/sbert_ar_nli_500k_norm This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [akhooli/sbert_ar_nli_500k_norm](https://huggingface.co/akhooli/sbert_ar_nli_500k_norm) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | | | positive | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8498 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs") # Run inference preds = model("لعمي") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 12.2323 | 52 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 1995 | | positive | 2500 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: 10000 - sampling_strategy: undersampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - run_name: setfit_hate_25kv - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0002 | 1 | 0.3185 | - | | 0.02 | 100 | 0.2901 | - | | 0.04 | 200 | 0.2441 | - | | 0.06 | 300 | 0.2209 | - | | 0.08 | 400 | 0.1715 | - | | 0.1 | 500 | 0.1304 | - | | 0.12 | 600 | 0.0891 | - | | 0.14 | 700 | 0.0604 | - | | 0.16 | 800 | 0.0436 | - | | 0.18 | 900 | 0.0408 | - | | 0.2 | 1000 | 0.0265 | - | | 0.22 | 1100 | 0.0239 | - | | 0.24 | 1200 | 0.0235 | - | | 0.26 | 1300 | 0.0232 | - | | 0.28 | 1400 | 0.0241 | - | | 0.3 | 1500 | 0.019 | - | | 0.32 | 1600 | 0.0168 | - | | 0.34 | 1700 | 0.0172 | - | | 0.36 | 1800 | 0.0136 | - | | 0.38 | 1900 | 0.0099 | - | | 0.4 | 2000 | 0.0117 | - | | 0.42 | 2100 | 0.0091 | - | | 0.44 | 2200 | 0.0067 | - | | 0.46 | 2300 | 0.0074 | - | | 0.48 | 2400 | 0.0055 | - | | 0.5 | 2500 | 0.0053 | - | | 0.52 | 2600 | 0.0054 | - | | 0.54 | 2700 | 0.0058 | - | | 0.56 | 2800 | 0.0059 | - | | 0.58 | 2900 | 0.0055 | - | | 0.6 | 3000 | 0.0043 | - | | 0.62 | 3100 | 0.0045 | - | | 0.64 | 3200 | 0.0055 | - | | 0.66 | 3300 | 0.0042 | - | | 0.68 | 3400 | 0.0024 | - | | 0.7 | 3500 | 0.0025 | - | | 0.72 | 3600 | 0.0047 | - | | 0.74 | 3700 | 0.0036 | - | | 0.76 | 3800 | 0.0029 | - | | 0.78 | 3900 | 0.0043 | - | | 0.8 | 4000 | 0.0036 | - | | 0.82 | 4100 | 0.0025 | - | | 0.84 | 4200 | 0.0033 | - | | 0.86 | 4300 | 0.0018 | - | | 0.88 | 4400 | 0.0016 | - | | 0.9 | 4500 | 0.0018 | - | | 0.92 | 4600 | 0.0023 | - | | 0.94 | 4700 | 0.0027 | - | | 0.96 | 4800 | 0.0023 | - | | 0.98 | 4900 | 0.0012 | - | | 1.0 | 5000 | 0.0021 | - | | 1.02 | 5100 | 0.0026 | - | | 1.04 | 5200 | 0.0019 | - | | 1.06 | 5300 | 0.002 | - | | 1.08 | 5400 | 0.0022 | - | | 1.1 | 5500 | 0.0025 | - | | 1.12 | 5600 | 0.0033 | - | | 1.1400 | 5700 | 0.001 | - | | 1.16 | 5800 | 0.0016 | - | | 1.18 | 5900 | 0.0015 | - | | 1.2 | 6000 | 0.0008 | - | | 1.22 | 6100 | 0.0011 | - | | 1.24 | 6200 | 0.0012 | - | | 1.26 | 6300 | 0.0009 | - | | 1.28 | 6400 | 0.0012 | - | | 1.3 | 6500 | 0.001 | - | | 1.32 | 6600 | 0.0014 | - | | 1.34 | 6700 | 0.0002 | - | | 1.3600 | 6800 | 0.0005 | - | | 1.38 | 6900 | 0.0003 | - | | 1.4 | 7000 | 0.0001 | - | | 1.42 | 7100 | 0.0007 | - | | 1.44 | 7200 | 0.0003 | - | | 1.46 | 7300 | 0.0002 | - | | 1.48 | 7400 | 0.0005 | - | | 1.5 | 7500 | 0.0001 | - | | 1.52 | 7600 | 0.0003 | - | | 1.54 | 7700 | 0.001 | - | | 1.56 | 7800 | 0.0003 | - | | 1.58 | 7900 | 0.0 | - | | 1.6 | 8000 | 0.0002 | - | | 1.62 | 8100 | 0.0 | - | | 1.6400 | 8200 | 0.0002 | - | | 1.6600 | 8300 | 0.0002 | - | | 1.6800 | 8400 | 0.0 | - | | 1.7 | 8500 | 0.0 | - | | 1.72 | 8600 | 0.0002 | - | | 1.74 | 8700 | 0.0002 | - | | 1.76 | 8800 | 0.0002 | - | | 1.78 | 8900 | 0.0002 | - | | 1.8 | 9000 | 0.0 | - | | 1.8200 | 9100 | 0.0004 | - | | 1.8400 | 9200 | 0.0 | - | | 1.8600 | 9300 | 0.0002 | - | | 1.88 | 9400 | 0.0002 | - | | 1.9 | 9500 | 0.0 | - | | 1.92 | 9600 | 0.0003 | - | | 1.94 | 9700 | 0.0 | - | | 1.96 | 9800 | 0.0 | - | | 1.98 | 9900 | 0.0 | - | | 2.0 | 10000 | 0.0 | - | ### Framework Versions - Python: 3.10.14 - SetFit: 1.2.0.dev0 - Sentence Transformers: 3.2.1 - Transformers: 4.45.1 - PyTorch: 2.4.0 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```