--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - fair_face metrics: - accuracy model-index: - name: vit-base-age-classification results: - task: name: Image Classification type: image-classification dataset: name: fair_face type: fair_face config: '0.25' split: train args: '0.25' metrics: - name: Accuracy type: accuracy value: 0.987904862407663 --- # vit-base-age-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the fair_face dataset. It achieves the following results on the evaluation set: - Loss: 0.0743 - Accuracy: 0.9879 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2011 | 1.0 | 385 | 1.0297 | 0.5664 | | 0.8578 | 2.0 | 770 | 0.7667 | 0.6936 | | 0.5961 | 3.0 | 1155 | 0.4088 | 0.8703 | | 0.3073 | 4.0 | 1540 | 0.1689 | 0.9581 | | 0.1146 | 5.0 | 1925 | 0.0743 | 0.9879 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1