--- language: - as - bn - brx - doi - gom - gu - hi - kn - ks - mai - ml - mr - mni - ne - or - pa - sa - sat - snd - ta - te - ur language_details: >- asm_Beng, ben_Beng, brx_Deva, doi_Deva, gom_Deva, guj_Gujr, hin_Deva, kan_Knda, kas_Arab, mai_Deva, mal_Mlym, mar_Deva, mni_Mtei, npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck, snd_Deva, tam_Taml, tel_Telu, urd_Arab tags: - indictrans2 - translation - ai4bharat - multilingual license: mit datasets: - flores-200 - IN22-Gen - IN22-Conv metrics: - bleu - chrf - chrf++ - comet inference: false --- # IndicTrans2 This is the model card of IndicTrans2 Indic-Indic Distilled 320M variant adapted after stitching Indic-En Distilled 200M and En-Indic Distilled 200M variants. Please refer to the [blog](https://ai4bharat.iitm.ac.in/blog/indictrans2-m2m/) for further details on model training, data and metrics. ### Usage Instructions Please refer to the [github repository](https://github.com/AI4Bharat/IndicTrans2/tree/main/huggingface_inference) for a detail description on how to use HF compatible IndicTrans2 models for inference. ### Citation If you consider using our work then please cite using: ``` @article{ai4bharat2023indictrans2, title = {IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages}, author = {AI4Bharat and Jay Gala and Pranjal A. Chitale and Raghavan AK and Sumanth Doddapaneni and Varun Gumma and Aswanth Kumar and Janki Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M. Khapra and Raj Dabre and Anoop Kunchukuttan}, year = {2023}, journal = {arXiv preprint arXiv: 2305.16307} } ```