Create modeling_indictrans.py
Browse files- modeling_indictrans.py +307 -0
modeling_indictrans.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The IndicTrans2 Authors and AI4Bharat team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch IndicTrans config."""
|
16 |
+
|
17 |
+
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import Any, Mapping, Optional
|
20 |
+
|
21 |
+
from transformers import PreTrainedTokenizer
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
|
24 |
+
from transformers.onnx.utils import compute_effective_axis_dimension
|
25 |
+
from transformers.utils import TensorType, is_torch_available
|
26 |
+
|
27 |
+
|
28 |
+
# Copied from transformers.models.m2m_100.configuration_m2m_100.M2M100Config->IndicTrans
|
29 |
+
class IndicTransConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`IT2Model`]. It is used to instantiate an
|
32 |
+
IT2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
33 |
+
with the defaults will yield a similar configuration to that of the IT2
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 50265):
|
41 |
+
Vocabulary size of the IT2 model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`IT2Model`] or
|
43 |
+
d_model (`int`, *optional*, defaults to 1024):
|
44 |
+
Dimensionality of the layers and the pooler layer.
|
45 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
46 |
+
Number of encoder layers.
|
47 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
48 |
+
Number of decoder layers.
|
49 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
54 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
55 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
56 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
57 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
58 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
59 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
60 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio for activations inside the fully connected layer.
|
66 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
67 |
+
The dropout ratio for classifier.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
69 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
70 |
+
just in case (e.g., 512 or 1024 or 2048).
|
71 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
72 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
73 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
74 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
75 |
+
for more details.
|
76 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
77 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
78 |
+
for more details.
|
79 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
81 |
+
```"""
|
82 |
+
model_type = "IndicTrans"
|
83 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
84 |
+
attribute_map = {
|
85 |
+
"num_attention_heads": "encoder_attention_heads",
|
86 |
+
"hidden_size": "d_model",
|
87 |
+
}
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
encoder_vocab_size=None,
|
92 |
+
decoder_vocab_size=None,
|
93 |
+
encoder_embed_dim=512,
|
94 |
+
decoder_embed_dim=512,
|
95 |
+
max_source_positions=210,
|
96 |
+
max_target_positions=210,
|
97 |
+
encoder_layers=6,
|
98 |
+
encoder_ffn_dim=2048,
|
99 |
+
encoder_attention_heads=8,
|
100 |
+
decoder_layers=6,
|
101 |
+
decoder_ffn_dim=2048,
|
102 |
+
decoder_attention_heads=8,
|
103 |
+
encoder_layerdrop=0.00,
|
104 |
+
decoder_layerdrop=0.00,
|
105 |
+
use_cache=True,
|
106 |
+
is_encoder_decoder=True,
|
107 |
+
activation_function="relu",
|
108 |
+
encoder_normalize_before=False,
|
109 |
+
decoder_normalize_before=False,
|
110 |
+
layernorm_embedding=False,
|
111 |
+
share_decoder_input_output_embed=False,
|
112 |
+
dropout=0.1,
|
113 |
+
attention_dropout=0.0,
|
114 |
+
activation_dropout=0.0,
|
115 |
+
init_std=0.02,
|
116 |
+
scale_embedding=True,
|
117 |
+
decoder_start_token_id=2,
|
118 |
+
pad_token_id=1,
|
119 |
+
bos_token_id=0,
|
120 |
+
eos_token_id=2,
|
121 |
+
**kwargs,
|
122 |
+
):
|
123 |
+
self.encoder_vocab_size = encoder_vocab_size
|
124 |
+
self.decoder_vocab_size = decoder_vocab_size
|
125 |
+
self.encoder_normalize_before = encoder_normalize_before
|
126 |
+
self.decoder_normalize_before = decoder_normalize_before
|
127 |
+
self.layernorm_embedding = layernorm_embedding
|
128 |
+
self.max_source_positions = max_source_positions
|
129 |
+
self.max_target_positions = max_target_positions
|
130 |
+
self.encoder_embed_dim = encoder_embed_dim
|
131 |
+
self.decoder_embed_dim = decoder_embed_dim
|
132 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
133 |
+
self.encoder_layers = encoder_layers
|
134 |
+
self.encoder_attention_heads = encoder_attention_heads
|
135 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
136 |
+
self.decoder_layers = decoder_layers
|
137 |
+
self.decoder_attention_heads = decoder_attention_heads
|
138 |
+
self.dropout = dropout
|
139 |
+
self.attention_dropout = attention_dropout
|
140 |
+
self.activation_dropout = activation_dropout
|
141 |
+
self.activation_function = activation_function
|
142 |
+
self.init_std = init_std
|
143 |
+
self.encoder_layerdrop = encoder_layerdrop
|
144 |
+
self.decoder_layerdrop = decoder_layerdrop
|
145 |
+
self.use_cache = use_cache
|
146 |
+
self.num_hidden_layers = encoder_layers
|
147 |
+
self.scale_embedding = scale_embedding
|
148 |
+
self.share_decoder_input_output_embed = share_decoder_input_output_embed
|
149 |
+
|
150 |
+
super().__init__(
|
151 |
+
pad_token_id=pad_token_id,
|
152 |
+
bos_token_id=bos_token_id,
|
153 |
+
eos_token_id=eos_token_id,
|
154 |
+
is_encoder_decoder=is_encoder_decoder,
|
155 |
+
decoder_start_token_id=decoder_start_token_id,
|
156 |
+
**kwargs,
|
157 |
+
)
|
158 |
+
|
159 |
+
|
160 |
+
class IndicTransOnnxConfig(OnnxSeq2SeqConfigWithPast):
|
161 |
+
@property
|
162 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
163 |
+
common_inputs = OrderedDict(
|
164 |
+
[
|
165 |
+
("input_ids", {0: "batch", 1: "encoder_sequence"}),
|
166 |
+
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
|
167 |
+
]
|
168 |
+
)
|
169 |
+
|
170 |
+
if self.use_past:
|
171 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
172 |
+
common_inputs["decoder_attention_mask"] = {
|
173 |
+
0: "batch",
|
174 |
+
1: "past_decoder_sequence + sequence",
|
175 |
+
}
|
176 |
+
else:
|
177 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
178 |
+
common_inputs["decoder_attention_mask"] = {
|
179 |
+
0: "batch",
|
180 |
+
1: "decoder_sequence",
|
181 |
+
}
|
182 |
+
|
183 |
+
if self.use_past:
|
184 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
185 |
+
return common_inputs
|
186 |
+
|
187 |
+
# Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering
|
188 |
+
# A better name would be _generate_dummy_inputs_for_encoder_and_decoder because sequence classification and question
|
189 |
+
# answering are not supported for IT2, but this name is preserved to be able to check that the copy matches what
|
190 |
+
# was done for BART so that it can be updated if need be.
|
191 |
+
def _generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
192 |
+
self,
|
193 |
+
tokenizer: PreTrainedTokenizer,
|
194 |
+
batch_size: int = -1,
|
195 |
+
seq_length: int = -1,
|
196 |
+
is_pair: bool = False,
|
197 |
+
framework: Optional[TensorType] = None,
|
198 |
+
) -> Mapping[str, Any]:
|
199 |
+
# Copied from OnnxConfig.generate_dummy_inputs
|
200 |
+
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
|
201 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
|
202 |
+
batch_size = compute_effective_axis_dimension(
|
203 |
+
batch_size,
|
204 |
+
fixed_dimension=OnnxConfig.default_fixed_batch,
|
205 |
+
num_token_to_add=0,
|
206 |
+
)
|
207 |
+
|
208 |
+
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
|
209 |
+
token_to_add = tokenizer.num_special_tokens_to_add(is_pair)
|
210 |
+
seq_length = compute_effective_axis_dimension(
|
211 |
+
seq_length,
|
212 |
+
fixed_dimension=OnnxConfig.default_fixed_sequence,
|
213 |
+
num_token_to_add=token_to_add,
|
214 |
+
)
|
215 |
+
|
216 |
+
# Generate dummy inputs according to compute batch and sequence
|
217 |
+
dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size
|
218 |
+
common_inputs = dict(tokenizer(dummy_input, return_tensors=framework))
|
219 |
+
return common_inputs
|
220 |
+
|
221 |
+
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_default_and_seq2seq_lm
|
222 |
+
def _generate_dummy_inputs_for_default_and_seq2seq_lm(
|
223 |
+
self,
|
224 |
+
tokenizer: PreTrainedTokenizer,
|
225 |
+
batch_size: int = -1,
|
226 |
+
seq_length: int = -1,
|
227 |
+
is_pair: bool = False,
|
228 |
+
framework: Optional[TensorType] = None,
|
229 |
+
) -> Mapping[str, Any]:
|
230 |
+
encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
231 |
+
tokenizer, batch_size, seq_length, is_pair, framework
|
232 |
+
)
|
233 |
+
|
234 |
+
# Generate decoder inputs
|
235 |
+
decoder_seq_length = seq_length if not self.use_past else 1
|
236 |
+
decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
|
237 |
+
tokenizer, batch_size, decoder_seq_length, is_pair, framework
|
238 |
+
)
|
239 |
+
decoder_inputs = {
|
240 |
+
f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()
|
241 |
+
}
|
242 |
+
common_inputs = dict(**encoder_inputs, **decoder_inputs)
|
243 |
+
|
244 |
+
if self.use_past:
|
245 |
+
if not is_torch_available():
|
246 |
+
raise ValueError(
|
247 |
+
"Cannot generate dummy past_keys inputs without PyTorch installed."
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
import torch
|
251 |
+
batch, encoder_seq_length = common_inputs["input_ids"].shape
|
252 |
+
decoder_seq_length = common_inputs["decoder_input_ids"].shape[1]
|
253 |
+
(
|
254 |
+
num_encoder_attention_heads,
|
255 |
+
num_decoder_attention_heads,
|
256 |
+
) = self.num_attention_heads
|
257 |
+
encoder_shape = (
|
258 |
+
batch,
|
259 |
+
num_encoder_attention_heads,
|
260 |
+
encoder_seq_length,
|
261 |
+
self._config.hidden_size // num_encoder_attention_heads,
|
262 |
+
)
|
263 |
+
decoder_past_length = decoder_seq_length + 3
|
264 |
+
decoder_shape = (
|
265 |
+
batch,
|
266 |
+
num_decoder_attention_heads,
|
267 |
+
decoder_past_length,
|
268 |
+
self._config.hidden_size // num_decoder_attention_heads,
|
269 |
+
)
|
270 |
+
|
271 |
+
common_inputs["decoder_attention_mask"] = torch.cat(
|
272 |
+
[
|
273 |
+
common_inputs["decoder_attention_mask"],
|
274 |
+
torch.ones(batch, decoder_past_length),
|
275 |
+
],
|
276 |
+
dim=1,
|
277 |
+
)
|
278 |
+
|
279 |
+
common_inputs["past_key_values"] = []
|
280 |
+
# If the number of encoder and decoder layers are present in the model configuration, both are considered
|
281 |
+
num_encoder_layers, num_decoder_layers = self.num_layers
|
282 |
+
min_num_layers = min(num_encoder_layers, num_decoder_layers)
|
283 |
+
max_num_layers = (
|
284 |
+
max(num_encoder_layers, num_decoder_layers) - min_num_layers
|
285 |
+
)
|
286 |
+
remaining_side_name = (
|
287 |
+
"encoder" if num_encoder_layers > num_decoder_layers else "decoder"
|
288 |
+
)
|
289 |
+
|
290 |
+
for _ in range(min_num_layers):
|
291 |
+
common_inputs["past_key_values"].append(
|
292 |
+
(
|
293 |
+
torch.zeros(decoder_shape),
|
294 |
+
torch.zeros(decoder_shape),
|
295 |
+
torch.zeros(encoder_shape),
|
296 |
+
torch.zeros(encoder_shape),
|
297 |
+
)
|
298 |
+
)
|
299 |
+
# TODO: test this.
|
300 |
+
shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape
|
301 |
+
for _ in range(min_num_layers, max_num_layers):
|
302 |
+
common_inputs["past_key_values"].append(
|
303 |
+
(torch.zeros(shape), torch.zeros(shape))
|
304 |
+
)
|
305 |
+
return common_inputs
|
306 |
+
|
307 |
+
generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm
|