--- license: mit language: - doi pipeline_tag: automatic-speech-recognition library_name: nemo --- ## IndicConformer IndicConformer is a Hybrid CTC-RNNT conformer ASR(Automatic Speech Recognition) model. ### Language Dogri ### Input This model accepts 16000 KHz Mono-channel Audio (wav files) as input. ### Output This model provides transcribed speech as a string for a given audio sample. ## Model Architecture This model is a conformer-Large model, consisting of 120M parameters, as the encoder, with a hybrid CTC-RNNT decoder. The model has 17 conformer blocks with 512 as the model dimension. ## AI4Bharat NeMo: To load, train, fine-tune or play with the model you will need to install [AI4Bharat NeMo](https://github.com/AI4Bharat/NeMo). We recommend you install it using the command shown below ``` git clone https://github.com/AI4Bharat/NeMo.git && cd NeMo && git checkout nemo-v2 && bash reinstall.sh ``` ## Usage Download and load the model from Huggingface. ``` import torch import nemo.collections.asr as nemo_asr model = nemo_asr.models.ASRModel.from_pretrained("ai4bharat/indicconformer_stt_doi_hybrid_rnnt_large") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.freeze() # inference mode model = model.to(device) # transfer model to device ``` Get an audio file ready by running the command shown below in your terminal. This will convert the audio to 16000 Hz and monochannel. ``` ffmpeg -i sample_audio.wav -ac 1 -ar 16000 sample_audio_infer_ready.wav ``` ### Inference using CTC decoder ``` model.cur_decoder = "ctc" ctc_text = model.transcribe(['sample_audio_infer_ready.wav'], batch_size=1,logprobs=False, language_id='doi')[0] print(ctc_text) ``` ### Inference using RNNT decoder ``` model.cur_decoder = "rnnt" rnnt_text = model.transcribe(['sample_audio_infer_ready.wav'], batch_size=1, language_id='doi')[0] print(rnnt_text) ```