--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - chest-xray-classification metrics: - accuracy model-index: - name: vit-pneumonia-classification results: - task: name: Image Classification type: image-classification dataset: name: chest-xray-classification type: chest-xray-classification config: full split: validation args: full metrics: - name: Accuracy type: accuracy value: 0.9560951680156978 --- # vit-pneumonia-classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the chest-xray-classification dataset. It achieves the following results on the evaluation set: - Loss: 0.1301 - Accuracy: 0.9561 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4786 | 1.0 | 32 | 0.3081 | 0.8609 | | 0.213 | 2.0 | 64 | 0.1645 | 0.9399 | | 0.1724 | 3.0 | 96 | 0.1419 | 0.9502 | | 0.1438 | 4.0 | 128 | 0.0950 | 0.9734 | | 0.1267 | 5.0 | 160 | 0.1225 | 0.9579 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0