--- license: mit language: - bn metrics: - accuracy - bertscore pipeline_tag: text-classification widget: - text: "আমি ফুটবল খেলতে ভালোবাসি" output: - label: POSITIVE score: 0.9 - label: NEGATIVE score: 0.1 - text: "আমার এই খাবারটা মোটেও পছন্দ হয়নি" output: - label: POSITIVE score: 0.1 - label: NEGATIVE score: 0.9 tags: - sentiment_analysis --- # Model Card for Model ID This model is built on Bert model using a Bangla Sentiment analysis dataset which is collected from social media dramas public comments. ## Model Details ### Model Description - **Developed by:** Ahnaf Tahmeed. - **Model type:** Transformer-based language model - **Language(s) (NLP):** Bengali - **License:** MIT - **Related Models:** BERT, RoBERTA ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("text-classification", model="ahnaf702/Sentibert") # Load model directly from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("ahnaf702/Sentibert") model = AutoModelForSequenceClassification.from_pretrained("ahnaf702/Sentibert") [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]